Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mobilization of Ca2+ from intracellular stores is an important mechanism for generating cytoplasmic Ca2+ signals [1]. Two families of intracellular Ca(2+)-release channels - the inositol-1,4, 5-trisphosphate (IP3) receptors and the ryanodine receptors (RyRs) - have been described in mammalian tissues [2]. Recently, nicotinic acid adenine dinucleotide phosphate (NAADP), a molecule derived from NADP+, has been shown to trigger Ca2+ release from intracellular stores in invertebrate eggs [3] [4] [5] [6] and pancreatic acinar cells [7]. The nature of NAADP-induced Ca2+ release is unknown but it is clearly distinct from the IP3- and cyclic ADP ribose (cADPR)-sensitive mechanisms in eggs (reviewed in [8] [9]). Furthermore, mammalian cells can synthesize and degrade NAADP, suggesting that NAADP-induced Ca2+ release may be widespread and thus contribute to the complexity of Ca2+ signalling [10] [11]. Here, we show for the first time that NAADP evokes Ca2+ release from rat brain microsomes by a mechanism that is distinct from those sensitive to IP3 or cADPR, and has a remarkably similar pharmacology to the action of NAADP in sea urchin eggs [12]. Membranes prepared from the same rat brain tissues are able to support the synthesis and degradation of NAADP. We therefore suggest that NAADP-mediated Ca2+ signalling could play an important role in neuronal Ca2+ signalling.

Original publication

DOI

10.1016/s0960-9822(99)80335-2

Type

Journal article

Journal

Curr Biol

Publication Date

15/07/1999

Volume

9

Pages

751 - 754

Keywords

Animals, Brain, Calcium, Dose-Response Relationship, Drug, Hydrogen-Ion Concentration, In Vitro Techniques, Microsomes, NAD, Rats, Rats, Sprague-Dawley, Sea Urchins, Signal Transduction, Time Factors