Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cyclic ADP ribose (cADPR) is a potent Ca(2+)-releasing agent, and putative second messenger, the endogenous levels of which are tightly regulated by synthetic (ADP-ribosyl cyclases) and degradative (cADPR hydrolase) enzymes. These enzymes have been characterized in a number of mammalian and invertebrate tissues and their activities are often found on a single polypeptide. beta-NAD+, cGMP and nitric oxide (NO) have been reported to mobilize Ca2+ in the sea urchin egg via the cADPR-mediated pathway. We now report that in sea urchin egg homogenates, nicotinamide inhibits the Ca(2+)-mobilizing action of beta-NAD+, cGMP and NO, but has no effect on cADPR-induced Ca2+ release. Moreover, nicotinamide inhibits cGMP-induced regenerative Ca2+ waves in the intact sea urchin egg. By successfully separating the cADPR-metabolizing machinery from that which releases Ca2+, we have shown that nicotinamide inhibits cADPR-mediated Ca2+ signalling at the level of cADPR generation. Importantly, nicotinamide had no effect upon the hydrolysis of cADPR, and its selective action on cyclase activity was supported by its inhibition of purified Aplysia ADP-ribosyl cyclase, which does not exhibit detectable hydrolytic activity. The action of nicotinamide in blocking Ca2+ release by beta-NAD+, cGMP and NO strongly suggests that these agents act as modulators of cADPR synthesis rather than to sensitize calcium release channels to cADPR.

Original publication

DOI

10.1042/bj3190613

Type

Journal article

Journal

Biochem J

Publication Date

15/10/1996

Volume

319 ( Pt 2)

Pages

613 - 617

Keywords

Adenosine Diphosphate Ribose, Animals, Calcium, Cyclic ADP-Ribose, Microsomes, Niacinamide, Sea Urchins, Signal Transduction