Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In higher organisms, the functions of many proteins are modulated by post-translational modifications (PTMs). Glycosylation is by far the most diverse of the PTM processes. Natural protein production methods typically produce PTM or glycoform mixtures within which function is difficult to dissect or control. Chemical tagging methods allow the precise attachment of multiple glycosylation modifications to bacterially expressed (bare) protein scaffolds, allowing reconstitution of functionally effective mimics of glycoproteins in higher organisms. In this way combining chemical control of PTM with readily available protein scaffolds provides a systematic platform for creating probes of protein-PTM interactions. This protocol describes the modification of Cys residues in proteins using glycomethanethiosulfonates and glycoselenenylsulfides and the modification of azidohomoalanine residues, introduced by Met replacement using auxotrophic Met(-) Escherichia coli strains, with glycoalkynes and the combination of these techniques for the creation of dual-tagged proteins. Each glycosylation procedure outlined in this protocol can be achieved in half a day.

Original publication

DOI

10.1038/nprot.2007.430

Type

Journal article

Journal

Nat Protoc

Publication Date

2007

Volume

2

Pages

3185 - 3194

Keywords

Carbohydrate Conformation, Glycoproteins, Glycosylation, Models, Molecular, Protein Conformation, Protein Processing, Post-Translational, Proteins, Staining and Labeling