Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The activation of the egg to begin development into an embryo is triggered by a sperm-induced increase in intracellular egg Ca2+. There has been much controversy about how the sperm induces this fundamental developmental event, but recent studies suggest that, in mammals, egg activation is triggered by a testis-specific phospholipase C: PLCzeta. Since the discovery of PLCzeta, it has been unclear whether its role in triggering egg activation is common to all vertebrates, or is confined to mammals. Here, we demonstrate for the first time that PLCzeta is present in a non-mammalian vertebrate. Using genomic and cDNA databases, we have identified the cDNA encoding a PLCzeta orthologue in the domestic chicken that, like the mammalian isoforms, is a testis-specific gene. The chicken PLCzeta cDNA is 2152 bp in size and encodes an open reading frame of 639 amino acids. When injected into mouse oocytes, chicken PLCzeta cRNA triggers Ca2+ oscillations, indicating that it has functional properties similar to those of mammalian PLCzeta. Our findings suggest that PLCzeta may have a universal role in triggering egg activation in vertebrates.

Original publication

DOI

10.1530/rep.1.00707

Type

Journal article

Journal

Reproduction

Publication Date

08/2005

Volume

130

Pages

157 - 163

Keywords

Amino Acid Sequence, Animals, Base Sequence, Calcium, Chickens, DNA, Complementary, Female, Gene Transfer Techniques, Haplorhini, Humans, In Situ Hybridization, Male, Mice, Microinjections, Microscopy, Fluorescence, Molecular Sequence Data, Oocytes, RNA, Complementary, Sequence Homology, Amino Acid, Sperm-Ovum Interactions, Testis