Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sandhoff disease involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the beta-subunit gene of beta-hexosaminidase A and B (Hexb gene). Accumulation of these glycosphingolipids (GSLs) produces progressive neurodegeneration, ultimately leading to death. Substrate reduction therapy (SRT) aims to decrease the rate of glycosphingolipid (GSL) biosynthesis to compensate for the impaired rate of catabolism. The imino sugar, N-butyldeoxygalactonojirimycin (NB-DGJ) inhibits the first committed step in GSL biosynthesis. NB-DGJ treatment, administered from postnatal day 2 (p-2) to p-5 (600 mg/kg/day)), significantly reduced total brain ganglioside and GM2 content in the Sandhoff disease (Hexb(-/-)) mice, but did not reduce the content of GA2. We also found that NB-DGJ treatment caused a slight, but significant elevation in brain sialidase activity. The drug had no adverse effects on viability, body weight, brain weight, or brain water content in the mice. No significant alterations in neutral lipids or acidic phospholipids were observed in the NB-DGJ-treated Hexb(-/-) mice. Our results show that NB-DGJ is effective in reducing total brain ganglioside and GM2 content at early neonatal ages.

Original publication

DOI

10.1016/j.neuint.2007.12.001

Type

Journal article

Journal

Neurochem Int

Publication Date

05/2008

Volume

52

Pages

1125 - 1133

Keywords

1-Deoxynojirimycin, Animals, Animals, Newborn, Brain, Brain Chemistry, Disease Models, Animal, Down-Regulation, G(M2) Ganglioside, Gangliosides, Glycosphingolipids, Mice, Mice, Knockout, Nerve Degeneration, Neuraminidase, Sandhoff Disease, Treatment Outcome, beta-Hexosaminidase alpha Chain