Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The cell surface proteome of tumors mediates the interface between the transformed cells and the general microenvironment, including interactions with stromal cells in the tumor niche and immune cells such as T cells. In addition, the cell surface proteome of individual cancers defines biomarkers for that tumor type and potential proteins that can be the target of antibody-mediated therapy. We have used next-generation deep RNA sequencing (RNA-seq) coupled to an in-house database of genes encoding cell surface proteins (herein referred to as the surfaceome) as a tool to define a cell surface proteome of Ewing sarcoma compared with progenitor mesenchymal stem cells. This subtractive RNA-seq analysis revealed a specific surfaceome of Ewing and showed unexpectedly that the leucine-rich repeat and Ig domain protein 1 (LINGO1) is expressed in over 90% of Ewing sarcoma tumors, but not expressed in any other somatic tissue apart from the brain. We found that the LINGO1 protein acts as a gateway protein internalizing into the tumor cells when engaged by antibody and can carry antibody conjugated with drugs to kill Ewing sarcoma cells. Therefore, LINGO1 is a new, unique, and specific biomarker and drug target for the treatment of Ewing sarcoma.

Original publication

DOI

10.1073/pnas.1521251113

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

29/03/2016

Volume

113

Pages

3603 - 3608

Keywords

Ewing sarcoma, LINGO1, antibody, cancer, cell surface, Biomarkers, Tumor, Cell Line, Tumor, High-Throughput Nucleotide Sequencing, Humans, Membrane Proteins, Mesenchymal Stem Cells, Neoplasm Proteins, Nerve Tissue Proteins, Proteome, RNA, Neoplasm, Sarcoma, Ewing, Sequence Analysis, RNA