Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT₄ receptor levels in both 5-HTT knockout (KO) and overexpressing (OE) mice using autoradiography with the selective 5-HT₄ receptor radioligand, [³H]SB207145. Compared to wild-type (5-HTT⁺/⁺) controls, homozygous 5-HTT KO mice (5-HTT⁻/⁻) had reduced 5-HT₄ receptor binding site density in all brain regions examined (35-65% of 5-HTT⁺/⁺). In contrast, the density of 5-HT₄ receptor binding sites was not significantly different between heterozygous 5-HTT KO mice (5-HTT⁻/⁺) and 5-HTT⁺/⁺ mice. The 5-HT synthesis inhibitor p-chlorophenylalanine (250 mg/kg twice daily for 3 d) abolished the difference in 5-HT₄ binding between 5-HTT⁻/⁻ and 5-HTT⁺/⁺ mice in all brain regions. Compared to wild-type (WT) littermate controls, 5-HTT OE mice had increased 5-HT₄ binding density across all brain regions, except amygdala (118-164% of WT) and this difference between genotypes was reduced by the 5-HTT inhibitor, fluoxetine (20 mg/kg twice daily, 3 d). Together, these findings suggest that variation in 5-HTT expression causes adaptive changes in 5-HT₄ receptor levels which are directly linked to alterations in 5-HT availability.

Original publication

DOI

10.1017/S1461145711001258

Type

Journal article

Journal

Int J Neuropsychopharmacol

Publication Date

09/2012

Volume

15

Pages

1099 - 1107

Keywords

Analysis of Variance, Animals, Autoradiography, Brain, Dose-Response Relationship, Drug, Fluoxetine, Gene Expression Regulation, Genetic Variation, Mice, Mice, Inbred C57BL, Mice, Knockout, Piperidines, Propane, Protein Binding, Radionuclide Imaging, Receptors, Serotonin, 5-HT4, Serotonin Agents, Serotonin Plasma Membrane Transport Proteins, Serotonin Uptake Inhibitors, Tritium