Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The endogenous oestrogen metabolite, 2-methoxyoestradiol (2-MeOE2) inhibits the growth of breast cancer cells and is also a potent anti-angiogenic agent. We have previously shown that the 3-sulphamoylated derivatives of 2-methoxyoestrogens are more potent than the non-sulphamoylated compounds. In this study, we have compared the abilities of 2-methoxyoestradiol-bis-sulphamate (2-MeOE2bisMATE) and 2-MeOE2 to inhibit the growth of MCF-7 breast cancer cells. Both compounds inhibited cell growth with the IC(50) for 2-MeOE2bisMATE (0.4 microM) being six-fold lower than that for 2-MeOE2 (2.5 microM). Oestrogen sulphamates are potent inhibitors of steroid sulphatase (STS) activity. 2-MeOE2bisMATE was found to retain its STS inhibitory activity and in a placental microsome assay system it was equipotent with oestrone-3-O-sulphamate (EMATE). An in vivo study was also carried out to compare the potency of 2-MeOE2bisMATE with that of EMATE and the non-steroidal STS inhibitor, 667 coumarin sulphamate (667 COUMATE). After a single oral dose (10mg/kg) some recovery of STS activity was detected by day 3 (10%) with activity partially restored (55%) by day 7 after administration of 667 COUMATE. For the other two steroidal compounds, STS activity remained almost completely inactivated for up to 5 days with complete restoration of activity occurring by day 15. The anti-proliferative and STS inhibitory properties of 2-MeOE2bisMATE suggest that it has considerable potential for development as a novel anti-cancer drug.

Type

Conference paper

Publication Date

02/2003

Volume

84

Pages

351 - 358

Keywords

Animals, Arylsulfatases, Cell Division, Coumarins, Dose-Response Relationship, Drug, Enzyme Inhibitors, Estradiol, Female, Humans, Inhibitory Concentration 50, Microsomes, Models, Chemical, Placenta, Rats, Rats, Wistar, Steryl-Sulfatase, Sulfonamides, Sulfonic Acids, Time Factors, Tumor Cells, Cultured