Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent activator of Ca2+ release from intracellular stores described. It acts on a mechanism distinct from inositol trisphosphate and ryanodine receptors, the two major Ca2+ release channels characterised. NAADP-gated Ca2+ release channels do not appear to be regulated by Ca2+ and may be better suited for triggering Ca2+ signals rather than propagating them. They exhibit a remarkable pharmacology for a putative intracellular Ca2+ release channel in that they are selectively blocked by potassium and L-type Ca2+ channel antagonists. Furthermore, in contrast to microsomal Ca2+ stores expressing IP3Rs and RyRs, those sensitive to NAADP are thapsigargin-insensitive, suggesting that they may be expressed on a different part of the endoplasmic reticulum. Perhaps the most unusual feature of the NAADP-gated Ca2+ release mechanisms is its inactivation properties. Unlike the mechanisms regulated by IP3 and cADPR in sea urchin eggs which after induction of Ca2+ release appear to become refractory to subsequent activation, very low concentrations of NAADP are able to inactivate NAADP-induced Ca2+ release fully at concentrations well below those required to activate Ca2+ release. The mechanism and physiological significance of this most unusual desensitisation phenomenon are unclear. More recently, NAADP has been shown to mobilise Ca2+ in ascidian oocytes, brain microsomes and pancreatic acinar cells suggesting a more widespread role in Ca2+ signalling. A possible role for this novel Ca2+ release mechanism in sea urchin egg fertilisation is discussed.

Original publication

DOI

10.1016/s0248-4900(00)01070-4

Type

Journal article

Journal

Biol Cell

Publication Date

07/2000

Volume

92

Pages

197 - 204

Keywords

Animals, Calcium, Calcium Signaling, Fertilization, NADP, Ovum, Sea Urchins