Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Utrophin modulation is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD), which should be applicable to all patient populations. Following on from ezutromid, the first-generation utrophin modulator, we describe the development of a second generation of utrophin modulators, based on the bioisosteric replacement of the sulfone group with a phosphinate ester and substitution of the metabolically labile naphthalene with a haloaryl substituent. The improved physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties, further reflected in the enhanced pharmacokinetic profile of the most advanced compounds, 30 and 27, led to significantly better in vivo exposure compared to ezutromid and alleviation of the dystrophic phenotype in mdx mice. While 30 was found to have dose-limiting hepatotoxicity, 27 and its enantiomers exhibited limited off-target effects, resulting in a safe profile and highlighting their potential utility as next-generation utrophin modulators suitable for progression toward a future DMD therapy.

Original publication




Journal article


J Med Chem

Publication Date