Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

GPR84 is an inflammation-induced receptor highly expressed on immune cells, yet its endogenous ligand is still unknown. This makes any interpretation of its physiological activity in vivo difficult. However, experiments with potent synthetic agonists have highlighted what the receptor can do, namely, enhance proinflammatory signaling and macrophage effector functions such as phagocytosis. Developing drugs to block these effects has attracted interest from the scientific community with the aim of decreasing disease activity in inflammatory disorders or enhancing inflammation resolution. In this review, we critically reassess the widely held belief that the major role of GPR84 is that of being a medium-chain fatty acid (MCFA) receptor. While MCFAs have been shown to activate GPR84, it remains to be demonstrated that they are present in relevant tissues at appropriate concentrations. In contrast to four other "full-time" free fatty acid receptor subtypes, GPR84 is not expressed by enteroendocrine cells and has limited expression in the gastrointestinal tract. Across multiple tissues and cell types, the highest expression levels of GPR84 are observed hours after exposure to an inflammatory stimulus. These factors obscure the relationship between ligand and receptor in the human body and do not support the exclusive physiological pairing of MCFAs with GPR84. To maximize the chances of developing efficacious drugs for inflammatory diseases, we must advance our understanding of GPR84 and what it does in vivo.

Original publication

DOI

10.1089/dna.2020.5846

Type

Journal article

Journal

DNA Cell Biol

Publication Date

11/2020

Volume

39

Pages

1926 - 1937

Keywords

capric acid, endogenous, expression, inflammation, metabolism, orphan receptor, Fatty Acids, Gastrointestinal Tract, Humans, Inflammation, Ligands, Macrophages, Phagocytosis, Receptors, G-Protein-Coupled, Signal Transduction