Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

(Rp)- and (Sp)-5'-O-thymidyl 3'-O-thymidyl [18O]phosphates have been synthesized by reaction of the respective (Sp)- and (Rp)-phosphorothioate precursors with N-bromosuccinimide in dioxane and H218O. Stereochemical analysis of the product derived from the (Rp)-phosphorothioate by digestion with snake venom phosphodiesterase in H217O and examination of the isotopic chirality of the resulting thymidine 5'-[16O,17O,18O]phosphate demonstrate that the replacement reaction has proceeded with inversion of configuration at phosphorus. Inspection of the 31P NMR spectrum of the methyl esters prepared from (Sp)-5'-O-thymidyl 3'-O-thymidyl [18O]phosphate confirms that the replacement reaction has proceeded with very little if any racemization. This spectrum also allows the assignment of the absolute configuration of these methyl triesters. (Rp)-5'-O-Thymidyl 3'-O-thymidyl [18O]phosphate has been used to demonstrate that the stereochemical course of the hydrolytic reaction catalyzed by nuclease P1 from Penicillium citrum proceeds with inversion of configuration at phosphorus and therefore probably does not involve the participation of a covalent enzyme intermediate.

Original publication




Journal article



Publication Date





1369 - 1377


Animals, Penicillium, Phosphorus, Oxygen Isotopes, Phosphoric Diester Hydrolases, Nucleotidases, Thymine Nucleotides, Crotalid Venoms, Magnetic Resonance Spectroscopy, Isotope Labeling, Molecular Conformation, Kinetics, Stereoisomerism, Single-Strand Specific DNA and RNA Endonucleases