Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have previously described a phospholipase C (PLC) activity in mammalian sperm cytosolic extracts. Here we have examined the Ca(2+) dependency of the enzyme, whether there is enough in a single sperm to account for Ca(2+) release at fertilization, and finally where in the egg is the phosphatidyl 4,5-bisphosphate, the substrate for the enzyme. As for all PLCs examined so far in vitro, we found that the boar sperm PLC activity was Ca(2+) dependent. Specific activity increased when free Ca(2+) levels were micromolar. However, even at nanomolar free Ca(2+) concentration the boar sperm PLC activity was considerable, being two orders of magnitude greater than PLC activities in other tissues. We calculated that PLC activity of a single boar sperm in a mammalian egg is enough to generate 400 nM inositol 1,4,5-trisphosphate (InsP(3)) in 1 min, which may be sufficient to account for the observed Ca(2+) changes in an egg at fertilization. We fractionated sea urchin egg homogenate and examined the ability of boar sperm extract to generate InsP(3) from these fractions. The sperm PLC activity triggered InsP(3) production from a PIP(2)-enriched nonmicrosomal egg compartment that contained yolk platelets. We propose that this sperm PLC activity, which is active at nanomolar Ca(2+) levels and hydrolyzes PIP(2) from intracellular membranes, could be involved in the Ca(2+) changes observed at fertilization.

Original publication

DOI

10.1006/dbio.2000.9929

Type

Journal article

Journal

Dev Biol

Publication Date

01/12/2000

Volume

228

Pages

125 - 135

Keywords

Aniline Compounds, Animals, Biological Factors, Calcium, Calcium Signaling, Cell Extracts, Cell Fractionation, Dose-Response Relationship, Drug, Inositol 1,4,5-Trisphosphate, Male, Microscopy, Electron, Oocytes, Organelles, Phosphatidylinositol 4,5-Diphosphate, Sea Urchins, Spermatozoa, Swine, Type C Phospholipases, Xanthenes