Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyze the interconversion between the oxidized and reduced forms of androgens and estrogens at the 17 position. The 17beta-HSD type 1 enzyme (17beta-HSD1) catalyzes the reduction of estrone to estradiol and is expressed in malignant breast cells. Inhibitors of this enzyme thus have potential as treatments for hormone dependent breast cancer. Here we report the syntheses and biological evaluation of novel inhibitors based on the estrone or estradiol template. These have been investigated by modification at the 6, 16 or 17 positions or combinations of these in order to gain information about structure-activity relationships by probing different areas in the enzyme active site. Activity data have been incorporated into a QSAR with predictive power, and the X-ray crystal structures of compounds 15 and 16c have been determined. Compound 15 has an IC50 of 320 nM for 17beta-HSD1 and is selective for 17beta-HSD1 over 17beta-HSD2. Three libraries of amides are also reported that led to the identification of inhibitors 19e and 20a, which have IC50 values of 510 and 380 nM respectively, and 20 h which, having an IC50 value of 37 nM, is the most potent inhibitor of 17beta-HSD1 reported to date. These amides are also selective for 17beta-HSD1 over 17beta-HSD2.

Original publication




Journal article


J Med Chem

Publication Date





1325 - 1345


17-Hydroxysteroid Dehydrogenases, Amides, Antineoplastic Agents, Breast Neoplasms, Cell Line, Tumor, Crystallography, X-Ray, Estradiol, Estrone, Female, Humans, Models, Molecular, Neoplasms, Hormone-Dependent, Oximes, Pyrazolones, Pyridines, Quantitative Structure-Activity Relationship