Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Fructose has been examined under isolation conditions using a combination of UV ultrafast laser vaporization and Fourier-transform microwave (FT-MW) spectroscopy. The rotational spectra for the parent, all (six) monosubstituted (13)C species, and two single D species reveal unambiguously that the free hexoketose is conformationally locked in a single dominant β-pyranose structure. This six-membered-chair skeleton adopts a (2)C(5) configuration (equivalent to (1)C(4) in aldoses). The free-molecule structure sharply contrasts with the furanose form observed in biochemically relevant polysaccharides, like sucrose. The structure of free fructose has been determined experimentally using substitution and effective structures. The enhanced stability of the observed conformation is primarily attributed to a cooperative network of five intramolecular O-H···O hydrogen bonds and stabilization of both endo and exo anomeric effects. Breaking a single intramolecular hydrogen bond destabilizes the free molecule by more than 10 kJ mol(-1). The structural results are compared to ribose, recently examined with rotational resolution, where six different conformations coexist with similar conformational energies. In addition, several DFT and ab initio methods and basis sets are benchmarked with the experimental data.

Original publication




Journal article


J Am Chem Soc

Publication Date





2845 - 2852


Fructose, Molecular Conformation, Quantum Theory