Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Capsular polysaccharides form the outermost protective layer around many Gram-negative bacteria. Antibiotics aimed directly at weakening this layer are not yet available. In pathogenic Escherichia coli E69, a protein, Wza, forms a pore in the outer membrane that transports K30 capsular polysaccharide from its site of synthesis to the outside of the cell. This therefore represents a prospective antibiotic target. Here we test a variety of grommet-like mimics of K30 capsular polysaccharide on wild-type Wza and on mutant open forms of the pore by electrical recording in planar lipid bilayers. The most effective glycomimetic was the unnatural cyclic octasaccharide octakis(6-deoxy-6-amino)cyclomaltooctaose (am8γCD), which blocks the α-helix barrel of Wza, a site that is directly accessible from the external medium. This glycomimetic inhibited K30 polysaccharide transport in live E. coli E69. With the protective outer membrane disrupted, the bacteria can be recognized and killed by the human immune system.

Original publication

DOI

10.1038/nchem.1695

Type

Journal article

Journal

Nat Chem

Publication Date

08/2013

Volume

5

Pages

651 - 659

Keywords

Carbohydrate Metabolism, Carrier Proteins, Escherichia coli