Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the vasculature, multiple members of the TRP-superfamily of non-selective cation channels (NSCCs) are expressed. These channels mediate diverse non-voltage-gated Ca2+-entry pathways and functions, which involve both vascular myocytes and communicating endothelial cells. Here, we provide an overview of recent progress in this area of research and discuss several specific examples of the important roles of vascular TRP channels in Ca2+signalling and electrophysiological responses. We especially focus on the recently discovered signal transduction mechanisms involving formation of specific complexes between TRP proteins and other better studied proteins that regulate cell calcium homeostasis, such as voltage-gated Ca2+channels and ryanodine receptors. Finally, we provide an overview of the progress in our understanding of TRPM8, which is known as the principal neuronal cold receptor, expression, localisation and function in the vasculature. We conclude that this channel is likely involved in complex thermal behaviour of blood vessels, better understanding of which is relevant to hypothermic and cardiovascular surgery conditions, therefore further research in this area is needed.


Journal article


Cell Membranes and Free Radical Research

Publication Date





195 - 201