Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Carbon nanotubes (CNTs) are cylindrical sheets of hexagonally ordered carbon atoms, giving tubes with diameters on the order of a few nanometers and lengths typically in the micrometer range. They may be single- or multiwalled (SWCNTs and MWCNTs respectively). Since the seminal report of their synthesis in 1991, CNTs have fascinated scientists of all stripes. Physicists have been intrigued by their electrical, thermal, and vibrational potential. Materials scientists have worked on integrating them into ultrastrong composites and electronic devices, while chemists have been fascinated by the effects of curvature on reactivity and have developed new synthesis and purification techniques. However, to date no large-scale, real-life biotechnological CNT breakthrough has been industrially adopted and it is proving difficult to justify taking these materials forward into the clinic. We believe that these challenges are not the end of the story, but that a viable carbon nanotube biotechnology is one in which the unique properties of nanotubes bring about an effect that would be otherwise impossible. In this Outlook, we therefore seek to reframe the field by highlighting those biological applications in which the singular properties of CNTs provide some entirely new activity or biological effect as a pointer to "what could be".

Original publication

DOI

10.1021/acscentsci.6b00005

Type

Journal article

Journal

ACS Cent Sci

Publication Date

27/04/2016

Volume

2

Pages

190 - 200