Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the hippocampus, the calcium-binding protein parvalbumin (PV) is expressed in interneurons that innervate perisomatic regions. PV in GABAergic synaptic terminals was proposed to limit repetitive GABA release by buffering of "residual calcium." We assessed the role of presynaptic PV in Ca(2+)-dependent GABA release in the hippocampus of PV-deficient (PV-/-) mice and wild-type (PV+/+) littermates. Pharmacologically isolated inhibitory postsynaptic currents (IPSCs) were evoked by low-intensity stimulation of the stratum pyramidale and recorded from voltage-clamped CA1 pyramidal neurons. The amplitude and decay time constant of single IPSCs were similar for both genotypes. Under our experimental conditions of reduced release probability and minimal presynaptic suppression, paired-pulse facilitation of IPSCs occurred at intervals from 2 to 50 ms, irrespective of the presence of PV. The facilitation of IPSCs induced by trains of 10 stimuli at frequencies >20 Hz was enhanced in cells from PV-/- mice, the largest difference between PV-/- and PV+/+ animals (220%) being observed at 33 Hz. The effect of IPSC facilitation at sustained gamma frequencies was assessed on kainate-induced rhythmic IPSC-paced neuronal oscillations at gamma frequencies, recorded with dual field potential recordings in area CA3. The maximum power of the oscillation was 138 microV(2) at 36 Hz in slices from PV+/+ mice and was trebled in slices from PV-/- mice. PV deficiency caused a similar increase in gamma power under conditions used to study IPSC facilitation and can be explained by an increased facilitation of GABA release at sustained high frequencies. The dominant frequency and coherence were not affected by PV deficiency. These observations suggest that PV deficiency, due to an increased short-term facilitation of GABA release, enhances inhibition by high-frequency burst-firing PV-expressing interneurons and may affect the higher cognitive functions associated with gamma oscillations.

Original publication




Journal article


J Neurophysiol

Publication Date





1414 - 1422


Animals, Chimera, Excitatory Amino Acid Agonists, Female, Hippocampus, Kainic Acid, Male, Mice, Mice, Inbred C57BL, Neural Inhibition, Neurons, Parvalbumins, Periodicity, Pregnancy, Presynaptic Terminals, gamma-Aminobutyric Acid