Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Acid hydrolysis of myo-inositol 1,3,5-orthoesters, apart from orthoformates, exclusively affords the corresponding 2-O-acyl myo-inositol products via a 1,2-bridged five-membered ring dioxolanylium ion intermediate observed by NMR spectroscopy. These C-2-substituted inositol derivatives provide valuable precursors for rapid and highly efficient routes to 2-O-acyl inositol 1,3,4,5,6-pentakisphosphates and myo-inositol 1,3,4,5,6-pentakisphosphate with biologically interesting and anticancer properties. Deuterium incorporation into the α-methylene group of such alkyl ester products (2-O-C(O)CD2R), when the analogous alkyl orthoester is treated with deuterated acid, is established utilizing the novel orthoester myo-inositol 1,3,5-orthobutyrate as an example. Such deuterated ester products provide intermediates for deuterium-labeled synthetic analogues. Investigation into this selective formation of 2-O-ester products and the deuterium incorporation is presented with proposed mechanisms from NMR experiments.

Original publication

DOI

10.1021/jo3027774

Type

Journal article

Journal

J Org Chem

Publication Date

15/03/2013

Volume

78

Pages

2275 - 2288

Keywords

Acids, Butyrates, Esters, Hydrolysis, Inositol, Magnetic Resonance Spectroscopy, Stereoisomerism