Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The levels of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in the cytoplasm are tightly regulated by two enzymes, Ins(1,4,5)P3 3-kinase and type I Ins(1,4,5)P3 5-phosphatase. The catalytic domain of Ins(1,4,5)P3 3-kinase (isoenzymes A, B and C) is restricted to approximately 275 amino acids at the C-terminal end. We were interested in understanding the catalytic mechanism of this key family of enzymes in order to exploit this in inhibitor design. We expressed the catalytic domain of rat Ins(1,4,5)P3 3-kinase A in Escherichia coli as a His- and S-tagged fusion protein. The purified enzyme was used in an Ins(1,4,5)P3 kinase assay to phosphorylate a series of inositol phosphate analogues with three or four phosphate groups. A synthetic route to D-2-deoxy-Ins(1,4,5)P3 was devised. D-2-Deoxy-Ins(1,4,5)P3 and D-3-deoxy-Ins(1,4,6)P3 were potent inhibitors of the enzyme, with IC50 values in the micromolar range. Amongst all analogues tested, only D-2-deoxy-Ins(1,4,5)P3 appears to be a good substrate of the Ins(1,4,5)P3 3-kinase. Therefore, the axial 2-hydroxy group of Ins(1,4,5)P3 is not involved in recognition of the substrate nor does it participate in the phosphorylation mechanism of Ins(1,4,5)P3. In contrast, the equatorial 3-hydroxy function must be present in that configuration for phosphorylation to occur. Our data indicate the importance of the 3-hydroxy function in the mechanism of inositol trisphosphate phosphorylation rather than in substrate binding.

Original publication

DOI

10.1002/cbic.200400443

Type

Journal article

Journal

Chembiochem

Publication Date

08/2005

Volume

6

Pages

1449 - 1457

Keywords

Animals, Base Sequence, Binding Sites, Catalysis, Chromatography, High Pressure Liquid, Humans, Inositol Phosphates, Models, Molecular, Molecular Sequence Data, Molecular Structure, Phosphorylation, Phosphotransferases (Alcohol Group Acceptor), Rats, Recombinant Proteins, Structure-Activity Relationship