Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) regulates glucocorticoid action at the pre-receptor stage by converting cortisone to cortisol. 11beta-HSD1 is selectively expressed in many tissues including the liver and adipose tissue where metabolic events are important. Metabolic syndrome relates to a number of metabolic abnormalities and currently has a prevalence of >20% in adult Americans. 11beta-HSD1 inhibitors are being investigated by many major pharmaceutical companies for type 2 diabetes and other abnormalities associated with metabolic syndrome. In this area of intense interest a number of structural types of 11beta-HSD1 inhibitor have been identified. It is important to have an array of structural types as the physicochemical properties of the compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here we report the discovery and synthesis of three structurally different series of novel 11beta-HSD1 inhibitors that inhibit human 11beta-HSD1 in the low micromolar range. Docking studies with 1-3 into the crystal structure of human 11beta-HSD1 reveal how the molecules may interact with the enzyme and cofactor and give further scope for structure based drug design in the optimisation of these series.

Original publication




Journal article


J Steroid Biochem Mol Biol

Publication Date





123 - 129


11-beta-Hydroxysteroid Dehydrogenase Type 1, Benzamides, Benzimidazoles, Binding Sites, Cells, Cultured, Drug Evaluation, Enzyme Inhibitors, Fluorenes, Humans, Models, Biological, Models, Molecular, Sulfonamides, Thiazoles, Thiophenes