Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ADP-ribosyl cyclases catalyze the transformation of nicotinamide adenine dinucleotide (NAD+) into the calcium-mobilizing nucleotide second messenger cyclic adenosine diphosphoribose (cADP-ribose) by adenine N1-cyclization onto the C-1' ' position of NAD+. The invertebrate Aplysia californica ADP-ribosyl cyclase is unusual among this family of enzymes by acting exclusively as a cyclase, whereas the other members, such as CD38 and CD157, also act as NAD+ glycohydrolases, following a partitioning kinetic mechanism. To explore the intramolecular cyclization reaction, the novel nicotinamide 2-fluoroadenine dinucleotide (2-fluoro-NAD+) was designed as a sterically very close analogue to the natural substrate NAD+, with only an electronic perturbation at the critical N1 position of the adenine base designed to impede the cyclization reaction. 2-Fluoro-NAD+ was synthesized in high yield via Lewis acid catalyzed activation of the phosphoromorpholidate derivative of 2-fluoroadenosine 5'-monophosphate and coupling with nicotinamide 5'-monophosphate. With 2-fluoro-NAD+ as substrate, A. californica ADP-ribosyl cyclase exhibited exclusively a NAD+ glycohydrolase activity, catalyzing its hydrolytic transformation into 2-fluoro-ADP-ribose, albeit at a rate ca. 100-fold slower than for the cyclization of NAD+ and also, in the presence of methanol, into its methanolysis product beta-1' '-O-methyl 2-fluoro-ADP-ribose with a preference for methanolysis over hydrolysis of ca. 100:1. CD38 likely converted 2-fluoro-NAD+ exclusively into the same product. We conclude that A. californica ADP-ribosyl cyclase can indeed be classified as a multifunctional enzyme that also exhibits a classical NAD+ glycohydrolase function. This alternative pathway that remains, however, kinetically cryptic when using NAD+ as substrate can be unmasked with a dinucleotide analogue whose conversion into the cyclic derivative is blocked. 2-Fluoro-NAD+ is therefore a useful molecular tool allowing dissection of the kinetic scheme for this enzyme.

Original publication




Journal article



Publication Date





4100 - 4109


ADP-ribosyl Cyclase 1, Animals, Aplysia, Computer Simulation, Kinetics, Models, Chemical, Models, Molecular, NAD, NAD+ Nucleosidase