Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Adenophostin A possesses the highest known affinity for the inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) receptor (InsP3R). The compound shares with Ins(1,4,5)P3 those structural elements essential for binding to the InsP3R. However, its adenosine 2'-phosphate moiety has no counterpart in the Ins(1,4,5)P3 molecule. To determine whether its unique structure conferred a distinctive biological activity, we characterized the adenophostin-induced Ca2+ signal in Xenopus oocytes using the Ca2+-gated Cl- current assay. In high concentrations, adenophostin A released Ca2+ from Ins(1,4, 5)P3-sensitive stores and stimulated a Cl- current that depended upon the presence of extracellular Ca2+. We used this Cl- current as a marker of Ca2+ influx. In low concentrations, however, adenophostin A stimulated Ca2+ influx exclusively. In contrast, Ins(1,4,5)P3 and (2-hydroxyethyl)-alpha-D-glucopyranoside 2',3, 4-trisphosphate, an adenophostin A mimic lacking most of the adenosine moiety, always released intracellular Ca2+ before causing Ca2+ influx. Ins(1,4,5)P3 could still release Ca2+ during adenophostin A-induced Ca2+ influx, confirming that the Ins(1,4, 5)P3-sensitive intracellular Ca2+ stores had not been emptied. Adenophostin- and Ins(1,4,5)P3-induced Ca2+ influx were not additive, suggesting that both agonists stimulated a common Ca2+ entry pathway. Heparin, which blocks binding to the InsP3R, prevented adenophostin-induced Ca2+ influx. These data indicate that adenophostin A can stimulate the influx of Ca2+ across the plasma membrane without inevitably emptying the Ins(1,4,5)P3-sensitive intracellular Ca2+ stores.

Type

Journal article

Journal

J Biol Chem

Publication Date

11/04/1997

Volume

272

Pages

9956 - 9961

Keywords

Adenosine, Animals, Calcium, Cell Compartmentation, Female, Inositol 1,4,5-Trisphosphate, Manganese, Oocytes, Xenopus