Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In contrast to aromatase inhibitors, which are now in clinical use, the development of steroid sulphatase (STS) inhibitors for breast cancer therapy is still at an early stage. STS regulates the formation of oestrone from oestrone sulphate (E1S) but also controls the hydrolysis of dehydroepiandrosterone sulphate (DHEA-S). DHEA can be reduced to 5-androstenediol (Adiol), a steroid with potent oestrogenic properties. The active pharmacophore for potent STS inhibitors has now been identified, i.e. a sulphamate ester group linked to an aryl ring. This has led to the development of a number of STS inhibitors, some of which are due to enter Phase I trials in the near future. Such first generation inhibitors include the tricyclic coumarin-based 667 COUMATE. Aryl sulphamates, such as 667 COUMATE, are taken up by red blood cells (rbc), binding to carbonic anhydrase II (CA II), and transit the liver without undergoing first-pass inactivation. 667 COUMATE is also a potent inhibitor of CA II activity with an IC50 of 17 nM. Second generation STS inhibitors, such as 2-methoxyoestradiol bis-sulphamate (2-MeOE2bisMATE), in addition to inhibiting STS activity, also inhibit the growth of oestrogen receptor negative (ER-) tumours in mice and are anti-angiogenic. As the active pharmacaphores for the inhibition of aromatase and STS are now known it may be possible to develop third generation inhibitors that are capable of inhibiting the activities of both enzymes. Whilst exploring the potential of such a strategy it was discovered that 667 COUMATE possessed weak aromatase inhibitory properties with an IC50 of 300 nM in JEG-3 cells. The identification of potent STS inhibitors will allow the therapeutic potential of this new class of drug to be explored in post-menopausal women with hormone-dependent breast cancer. Second generation inhibitors, such as 2-MeOE2bisMATE, which also inhibit the growth of ER- tumours should be active against a wide range of cancers.

Type

Conference paper

Publication Date

09/2003

Volume

86

Pages

423 - 432

Keywords

Animals, Aromatase Inhibitors, Breast Neoplasms, Coumarins, Enzyme Inhibitors, Erythrocytes, Estrogens, Humans, Mammary Neoplasms, Experimental, Steryl-Sulfatase, Sulfonamides, Sulfonic Acids