Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Most cancer cells are dependent on glucose uptake to fulfil their energy requirements. In the present investigation we have examined the ability of 2-methoxyestrone (2-MeOE1), 2-methoxyestradiol (2-MeOE2), 2-methoxyestrone-3-O-sulfamate (2-MeOEMATE), and a number of related compounds, to inhibit 2-deoxy-D-[1-(3)H]-glucose uptake in MCF-7 breast cancer cells. Glucose uptake was shown to be linear with respect to cell number and time over a 5-35min period. 2-MeOE2, 2-MeOE1 and 2-MeOEMATE inhibited glucose uptake by 25-49% at 10 microM. 2-Hydroxyestradiol and estrone sulfate had little effect on glucose uptake, whereas estrone glucuronide inhibited uptake by 29%. There is evidence that 2-methoxyestrogens may exert an anti-mitotic effect on cells by stabilizing microtubules in a similar manner to that of paclitaxel. We therefore examined the effect of exposing cells to 2-MeOEMATE or paclitaxel for 24 h on basal or insulin stimulated glucose uptake. Using these conditions, 2-MeOEMATE and paclitaxel inhibited basal glucose uptake by 50 and 22%, respectively, and insulin stimulated uptake by 36 and 51%, respectively. The development of drugs that can inhibit glucose uptake could have therapeutic potential for the treatment of breast cancer.


Journal article


Mol Cell Endocrinol

Publication Date





61 - 66


Antineoplastic Agents, Biological Transport, Active, Breast Neoplasms, Deoxyglucose, Estradiol, Estrone, Female, Humans, Hydroxyestrones, Insulin, Kinetics, Paclitaxel, Tumor Cells, Cultured