Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. The properties of specific Ins(1,4,5)P3- and Ins(1,3,4,5)P4-binding sites have been compared in a crude 'P2' cerebellar membrane fraction. 2. A homogeneous population of [3H]Ins(1,4,5)P3-binding sites was present (KD 23.1 +/- 3.6 nM) at high density (Bmax. 11.9 +/- 1.8 pmol/mg of protein); whereas data obtained for [32P]Ins(1,3,4,5)P4 specific binding were best fitted to a two-site model, the high-affinity binding component (KD 2.6 +/- 0.7 nM) constituted 64.2 +/- 4.3% of the total population and was present at relatively low density (Bmax. 187 +/- 27 fmol/mg of protein). 3. The two high-affinity inositol polyphosphate-binding sites exhibited markedly different pH optima for radioligand binding, allowing the two sites to be independently investigated. At pH 8.0, [3H]Ins(1,4,5)P3 binding was maximal, whereas [32P]Ins(1,3,4,5)P4 specific binding was very low; conversely, at pH 5.0, [32P]Ins(1,3,4,5)P4 binding was maximal, whereas [3H]Ins(1,4,5)P3 binding was undetectably low. 4. Both inositol polyphosphate-binding sites exhibited marked positional and stereo-specificity. Of the analogues studied, only phosphorothioate substitution to form inositol 1,4,5-trisphosphorothioate was tolerated at the Ins(1,4,5)P3-binding site, with only a 2-3-fold loss of binding activity. Addition of a glyceroyl moiety at the 1-phosphate position or addition of further phosphate substituents at the 3- or 6-positions caused dramatic losses in displacing activity. Similarly, complete phosphorothioate substitution of Ins(1,3,4,5)P4 caused an approx. 6-fold loss of binding activity at the [32P]Ins(1,3,4,5)P4-binding site, whereas Ins(1,4,5,6)P4, Ins(1,3,4,6)P4, Ins(1,4,5)P3 and Ins(1,3,4,5,6)P5 were bound at least 100-fold weaker at this site. Therefore, only the phosphorothioate derivatives retained high affinity and selectivity for the two inositol polyphosphate-binding sites. 5. Heparin and pentosan polysulphate were potent but non-selective inhibitors at Ins(1,4,5)P3- and Ins(1,3,4,5)P4-binding sites. N-Desulphation (with or without N-reacetylation) of heparin decreased inhibitory activity at the Ins(1,4,5)P3-, but not at the Ins(1,3,4,5)P4-binding site; however, the selectivity of this effect was only about 4-fold. O- and N-desulphated N-reacetylated heparin was essentially inactive at both sites. 6. The results are discussed with respect to the separate identities of the inositol polyphosphate-binding sites.

Type

Journal article

Journal

Biochem J

Publication Date

15/03/1991

Volume

274 ( Pt 3)

Pages

861 - 867

Keywords

Animals, Binding Sites, Cell Membrane, Cerebellum, Hydrogen-Ion Concentration, Inositol 1,4,5-Trisphosphate, Inositol Phosphates, Rats