The effect of myo-inositol 1,4,5-trisphosphorothioate on Cl- current pattern and intracellular Ca2+ in the Xenopus laevis oocyte.
Ferguson JE., Potter B., Nuccitelli R.
Microinjection of myo-inositol 1,4,5-trisphosphate into voltage-clamped Xenopus laevis oocytes or the stimulation of the phosphatidylinositol cycle elicits a complex Ca2(+)-dependent Cl- current pattern. Microinjection of myo-inositol 1,3,4,5-tetrakisphosphate causes an immediate release of Ca2+, but elicits a different Cl- current pattern than myo-inositol 1,4,5-trisphosphate. We have studied the effects of myo-inositol 1,4,5-trisphosphorothioate, which can not be converted to myo-inositol 1,3,4,5-tetrakisphosphate. Myo-inositol 1,4,5-trisphosphorothioate caused an immediate release of intracellular Ca2+, as measured by fura-2 imaging. Myo-inositol 1,4,5-trisphosphorothioate generated a Cl- current pattern similar to myo-inositol 1,3,4,5-tetrakisphosphate, not myo-inositol 1,4,5-trisphosphate.