Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

SNi-like mechanisms, which involve front-face leaving group departure and nucleophile approach, have been observed experimentally and computationally in chemical and enzymatic substitution at α-glycosyl electrophiles. Since SNi-like, SN1 and SN2 substitution pathways can be energetically comparable, engineered switching could be feasible. Here, engineering of Sulfolobus solfataricus β-glycosidase, which originally catalyzed double SN2 substitution, changed its mode to SNi-like. Destruction of the first SN2 nucleophile through E387Y mutation created a β-stereoselective catalyst for glycoside synthesis from activated substrates, despite lacking a nucleophile. The pH profile, kinetic and mutational analyses, mechanism-based inactivators, X-ray structure and subsequent metadynamics simulations together suggest recruitment of substrates by π-sugar interaction and reveal a quantum mechanics-molecular mechanics (QM/MM) free-energy landscape for the substitution reaction that is similar to those of natural, SNi-like glycosyltransferases. This observation of a front-face mechanism in a β-glycosyltransfer enzyme highlights that SNi-like pathways may be engineered in catalysts with suitable environments and suggests that 'β-SNi' mechanisms may be feasible for natural glycosyltransfer enzymes.

Original publication




Journal article


Nat Chem Biol

Publication Date





874 - 881


Biocatalysis, Glycosyltransferases, Hydrolases, Protein Engineering, Quantum Theory, Sulfolobus solfataricus, beta-Glucosidase