Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Regulation of Cl(-) channel conductance by Ins(3,4,5,6)P(4) provides receptor-dependent control over salt and fluid secretion, cell volume homeostasis, and electrical excitability of neurones and smooth muscle. Ignorance of how Ins(3,4,5,6)P(4) is synthesized has long hindered our understanding of this signaling pathway. We now show Ins(3,4,5,6)P(4) synthesis by Ins(1,3,4,5,6)P(5) 1-phosphatase activity by an enzyme previously characterized as an Ins(3,4,5,6)P(4) 1-kinase. Rationalization of these phenomena with a ligand binding model unveils Ins(1,3,4)P(3) as not simply an alternative kinase substrate, but also an activator of Ins(1,3,4,5,6)P(5) 1-phosphatase. Stable overexpression of the enzyme in epithelial monolayers verifies its physiological role in elevating Ins(3,4,5,6)P(4) levels and inhibiting secretion. It is exceptional for a single enzyme to catalyze two opposing signaling reactions (1-kinase/1-phosphatase) under physiological conditions. Reciprocal coordination of these opposing reactions offers an alternative to general doctrine that intracellular signals are regulated by integrating multiple, distinct phosphatases and kinases.

Type

Journal article

Journal

Curr Biol

Publication Date

19/03/2002

Volume

12

Pages

477 - 482

Keywords

Calcium, Humans, Inositol Phosphates, Phosphoric Monoester Hydrolases, Phosphorylation, Signal Transduction