A defective flexible loop contributes to the processing and gating defects of the predominant cystic fibrosis-causing mutation.
Chen X., Zhu S., Zhenin M., Xu W., Bose SJ., Wong MP-F., Leung GPH., Senderowitz H., Chen J-H.
People with the genetic disease cystic fibrosis (CF) often carry a deletion mutation ΔF508 on the gene encoding the CF transmembrane conductance regulator (CFTR) Cl- channel. This mutation greatly reduces the CFTR maturation process and slows the channel opening rate. Here, we investigate whether residues near F508 contribute to these defects in ΔF508-CFTR. Most deletion mutations, but not alanine substitutions, of individual residues from positions 503 to 513 impaired CFTR maturation. Interestingly, only protein processing of ΔY512-CFTR, like that of ΔF508-CFTR, was greatly improved by low-temperature culture at 27°C or small-molecule corrector C18. The 2 mutant Cl- channels were equally slow to open, suggesting that they may share common structural flaws. Studies on the H3-H4 loop that links residues F508 and Y512 demonstrate that G509A/V510G mutations, moving G509 1 position backward in the loop, markedly enhanced ΔF508-CFTR maturation and opening rate while promoting protein stability and persistence of the H3 helix in ΔF508 nucleotide-binding domain 1. Moreover, V510A/S511A mutations noticeably increased ΔY512-CFTR maturation at 27°C and its opening rate. Thus, loop abnormalities may contribute to ΔF508- and ΔY512-CFTR defects. Importantly, correcting defects from G509 displacement in ΔF508-CFTR may offer a new avenue for drug discovery and CF treatments.-Chen, X., Zhu, S., Zhenin, M., Xu, W., Bose, S. J., Wong, M. P.-F., Leung, G. P. H., Senderowitz, H., Chen, J.-H. A defective flexible loop contributes to the processing and gating defects of the predominant cystic fibrosis-causing mutation.