Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tyrosinase is a copper-containing enzyme that regulates melanin biosynthesis in mammals. Mutations at a single N-glycosylation sequon of tyrosinase have been reported to be responsible for oculocutaneous albinism type IA in humans, characterized by inactive tyrosinase and the total absence of pigmentation. To probe the role that each N-glycosylation site plays in the synthesis of biologically active tyrosinase, we analyzed the calnexin mediated folding of tyrosinase N-glycosylation mutants. We have determined that four of the six potential N-glycosylation sites, including that associated with albinism, are occupied. Analysis of the folding pathway and activity of 15 tyrosinase mutants lacking one or more of the occupied N-glycosylation sites shows that glycans at any two N-glycosylation sites are sufficient to interact with calnexin and give partial activity, but a specific pair of sites (Asn(86) and Asn(371)) is required for full activity. The mutants with less than two N-glycosylation sites do not interact with calnexin and show a complete absence of enzyme activity. Copper analysis of selected mutants suggests that the observed partial activity is due to two populations with differential copper content. By correlating the degree of folding with the activity of tyrosinase, we propose a local folding mechanism for tyrosinase that can explain the mechanism of inactivation of tyrosinase N-glycosylation mutants found in certain pigmentation disorders.

Type

Journal article

Journal

J Biol Chem

Publication Date

17/03/2000

Volume

275

Pages

8169 - 8175

Keywords

Animals, CHO Cells, Calcium-Binding Proteins, Calnexin, Copper, Cricetinae, Glycoproteins, Glycosylation, Metalloproteins, Mice, Molecular Chaperones, Monophenol Monooxygenase, Mutagenesis, Site-Directed, Protein Folding, Protein Processing, Post-Translational