The pharmacology of the TMEM16A channel: therapeutic opportunities.
Journal article
Al-Hosni R. et al, (2022), Trends Pharmacol Sci
The Ca2+-gated channel TMEM16A amplifies capillary pericyte contraction and reduces cerebral blood flow after ischemia
Journal article
Korte N. et al, (2022), Journal of Clinical Investigation
TMEM16A channel is a key regulator of cerebral blood flow at the capillary level
Conference paper
Ilkan Z. et al, (2022), BIOPHYSICAL JOURNAL, 121, 176A - 176A
Polymodal Control of TMEM16x Channels and Scramblases
Journal article
Agostinelli E. and Tammaro P., (2022), International Journal of Molecular Sciences, 23
An outer-pore gate modulates the pharmacology of the TMEM16A channel.
Journal article
Dinsdale RL. et al, (2021), Proc Natl Acad Sci U S A, 118
Ion channels as convergence points in the pathology of pulmonary arterial hypertension.
Journal article
Jouen-Tachoire TRH. et al, (2021), Biochem Soc Trans
The Molecular Basis of the Regulation of the TMEM16A Ca2+-Activated Cl- Channel by the Lysosomal NPC1 Protein
Conference paper
Scofano LF. et al, (2021), BIOPHYSICAL JOURNAL, 120, 247A - 247A
Lipid-mediated control of the TMEM16A Ca2+- gated Cl- channel by the lysosomal NPC1 protein
Conference paper
Scofano LF. et al, (2021), BRITISH JOURNAL OF PHARMACOLOGY, 178, 414 - 414
Molecular Mechanism of Modulation of the TMEM16A Channel by Anthracene-9-Carboxylic Acid: Implications for Channel Gating
Conference paper
Dinsdale R. et al, (2020), BIOPHYSICAL JOURNAL, 118, 325A - 325A
Control of cerebral blood flow by capillary pericytes in Alzheimer's disease
Conference paper
Korte N. et al, (2019), ACTA PHYSIOLOGICA, 227
The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K.
Journal article
Bushell SR. et al, (2019), Nat Commun, 10
The Ca2+-gated Cl- channel TMEM16A is a crucial mediator of pericyte contraction in the CNS microvasculature
Conference paper
Korte N. et al, (2019), GLIA, 67, E649 - E649
Inhibition of TMEM16A by Docosahexaenoic Acid Plays a Crucial Role in Blood Vessel Relaxation
Conference paper
Acheson KE. and Tammaro P., (2019), BIOPHYSICAL JOURNAL, 116, 172A - 172A
Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2.
Journal article
Rorsman NJG. et al, (2018), Br J Pharmacol, 175, 2028 - 2045
Contrasting effects of phosphatidylinositol 4,5-bisphosphate on cloned TMEM16A and TMEM16B channels.
Journal article
Ta CM. et al, (2017), Br J Pharmacol, 174, 2984 - 2999
Mechanism of allosteric activation of TMEM16A/ANO1 channels by a commonly used chloride channel blocker.
Journal article
Ta CM. et al, (2016), Br J Pharmacol, 173, 511 - 528
Corrigendum to "Disease-causing mutations associated with four bestrophinopathies exhibit disparate effects on the localization, but not the oligomerization, of Bestrophin-1" [Exp. Eye Res. 121 (2014) 74-85] DOI: 10.1016/j.exer.2014.02.006
Journal article
Johnson AA. et al, (2014), Experimental Eye Research, 127
Disease-causing mutations associated with four bestrophinopathies exhibit disparate effects on the localization, but not the oligomerization, of Bestrophin-1.
Journal article
Johnson AA. et al, (2014), Exp Eye Res, 121, 74 - 85
Coronary spasm and acute myocardial infarction due to a mutation (V734I) in the nucleotide binding domain 1 of ABCC9.
Journal article
Smith KJ. et al, (2013), Int J Cardiol, 168, 3506 - 3513
Putative pore-loops of TMEM16/anoctamin channels affect channel density in cell membranes.
Journal article
Adomaviciene A. et al, (2013), J Physiol, 591, 3487 - 3505