Search results
Found 5063 matches for
Targeted single-cell RNA sequencing of transcription factors enhances the identification of cell types and trajectories.
Single-cell RNA sequencing (scRNA-seq) is a widely used method for identifying cell types and trajectories in biologically heterogeneous samples, but it is limited in its detection and quantification of lowly expressed genes. This results in missing important biological signals, such as the expression of key transcription factors (TFs) driving cellular differentiation. We show that targeted sequencing of ∼1000 TFs (scCapture-seq) in iPSC-derived neuronal cultures greatly improves the biological information garnered from scRNA-seq. Increased TF resolution enhanced cell type identification, developmental trajectories, and gene regulatory networks. This allowed us to resolve differences among neuronal populations, which were generated in two different laboratories using the same differentiation protocol. ScCapture-seq improved TF-gene regulatory network inference and thus identified divergent patterns of neurogenesis into either excitatory cortical neurons or inhibitory interneurons. Furthermore, scCapture-seq revealed a role for of retinoic acid signaling in the developmental divergence between these different neuronal populations. Our results show that TF targeting improves the characterization of human cellular models and allows identification of the essential differences between cellular populations, which would otherwise be missed in traditional scRNA-seq. scCapture-seq TF targeting represents a cost-effective enhancement of scRNA-seq, which could be broadly applied to improve scRNA-seq resolution.
A role for the cortex in sleep-wake regulation
The cortex and subcortical circuitry are thought to play distinct roles in the generation of sleep oscillations and global control of vigilance states. Here we silenced a subset of cortical layer 5 pyramidal and dentate gyrus granule cells in mice using a cell-specific ablation of the key t-SNARE protein SNAP25. We found a marked increase in wakefulness accompanied by a reduced rebound of EEG slow-wave activity after sleep deprivation. Our data illustrates an important role for the cortex in both global state control and sleep homeostasis.
A role for the cortex in sleep-wake regulation.
Cortical and subcortical circuitry are thought to play distinct roles in the generation of sleep oscillations and global state control, respectively. Here we silenced a subset of neocortical layer 5 pyramidal and archicortical dentate gyrus granule cells in male mice by ablating SNAP25. This markedly increased wakefulness and reduced rebound of electroencephalographic slow-wave activity after sleep deprivation, suggesting a role for the cortex in both vigilance state control and sleep homeostasis.
Excitatory GABAergic signalling is associated with benzodiazepine resistance in status epilepticus.
Status epilepticus is defined as a state of unrelenting seizure activity. Generalized convulsive status epilepticus is associated with a rapidly rising mortality rate, and thus constitutes a medical emergency. Benzodiazepines, which act as positive modulators of chloride (Cl-) permeable GABAA receptors, are indicated as first-line treatment, but this is ineffective in many cases. We found that 48% of children presenting with status epilepticus were unresponsive to benzodiazepine treatment, and critically, that the duration of status epilepticus at the time of treatment is an important predictor of non-responsiveness. We therefore investigated the cellular mechanisms that underlie acquired benzodiazepine resistance, using rodent organotypic and acute brain slices. Removing Mg2+ ions leads to an evolving pattern of epileptiform activity, and eventually to a persistent state of repetitive discharges that strongly resembles clinical EEG recordings of status epilepticus. We found that diazepam loses its antiseizure efficacy and conversely exacerbates epileptiform activity during this stage of status epilepticus-like activity. Interestingly, a low concentration of the barbiturate phenobarbital had a similar exacerbating effect on status epilepticus-like activity, while a high concentration of phenobarbital was effective at reducing or preventing epileptiform discharges. We then show that the persistent status epilepticus-like activity is associated with a reduction in GABAA receptor conductance and Cl- extrusion capability. We explored the effect on intraneuronal Cl- using both gramicidin, perforated-patch clamp recordings and Cl- imaging. This showed that during status epilepticus-like activity, reduced Cl- extrusion capacity was further exacerbated by activity-dependent Cl- loading, resulting in a persistently high intraneuronal Cl-. Consistent with these results, we found that optogenetic stimulation of GABAergic interneurons in the status epilepticus-like state, actually enhanced epileptiform activity in a GABAAR dependent manner. Together our findings describe a novel potential mechanism underlying benzodiazepine-resistant status epilepticus, with relevance to how this life-threatening condition should be managed in the clinic.
The Role of TRESK in Discrete Sensory Neuron Populations and Somatosensory Processing.
Two-pore domain K+ (K2P) channels generate K+ leak current, which serves a vital role in controlling and modulating neuronal excitability. This diverse family of K+ channels exhibit distinct expression and function across neuronal tissues. TWIK-related spinal cord K+ channel (TRESK) is a K2P channel with a particularly enriched role in sensory neurons and in vivo pain pathways. Here, we explored the role of TRESK across molecularly distinct sensory neuron populations and assessed its contribution to different sensory modalities. We found TRESK mRNA only in select populations of C- and A-δ nociceptors, in addition to low threshold D-hair afferents. Neurons from mice in which TRESK has been ablated demonstrated marked hyperexcitability, which was amplified under inflammatory challenge. Detailed behavioral phenotyping of TRESK knockout mice revealed specific deficits in somatosensory processing of noxious and non-noxious stimuli. These results demonstrate novel roles of TRESK in somatosensory processing and offer important information to those wishing to target the channel for therapeutic means.
The Von Restorff effect in visual object recognition memory in humans and monkeys. The role of frontal/perirhinal interaction.
This study reports the development of a new, modified delayed matching to sample (DMS) visual recognition memory task that controls the relative novelty of test stimuli and can be used in human and nonhuman primates. We report findings from normal humans and unoperated monkeys, as well as three groups of operated monkeys. In the study phase of this modified paradigm, subjects studied lists of two-dimensional visual object stimuli. In the test phase each studied object was presented again, now paired with a new stimulus (a foil), and the subject had to choose the studied item. In some lists one study item (the novel or isolate item) and its associated foil differed from the others (the homogenous items) along one stimulus dimension (color). The critical experimental measure was the comparison of the visual object recognition error rates for isolate and homogenous test items. This task was initially administered to human subjects and unoperated monkeys. Error rates for both groups were reliably lower for isolate than for homogenous stimuli in the same list position (the von Restorff effect). The task was then administered to three groups of monkeys who had selective brain lesions. Monkeys with bilateral lesions of the amygdata and fornix, two structures that have been proposed to play a role in novelty and memory encoding, were similar to normal monkeys in their performance on this task. Two further groups--with disconnection lesions of the perirhinal cortex and either the prefrontal cortex or the magnocellular mediodorsal thalamus--showed no evidence of a von Restorff effect. These findings are not consistent with previous proposals that the hippocampus and amygdala constitute a general novelty processing network. Instead, the results support an interaction between the perirhinal and frontal cortices in the processing of certain kinds of novel information that support visual object recognition memory.
Pro-maturational Effects of Human iPSC-Derived Cortical Astrocytes upon iPSC-Derived Cortical Neurons.
Astrocytes influence neuronal maturation and function by providing trophic support, regulating the extracellular environment, and modulating signaling at synapses. The emergence of induced pluripotent stem cell (iPSC) technology offers a human system with which to validate and re-evaluate insights from animal studies. Here, we set out to examine interactions between human astrocytes and neurons derived from a common cortical progenitor pool, thereby recapitulating aspects of in vivo cortical development. We show that the cortical iPSC-derived astrocytes exhibit many of the molecular and functional hallmarks of astrocytes. Furthermore, optogenetic and electrophysiological co-culture experiments reveal that the iPSC-astrocytes can actively modulate ongoing synaptic transmission and exert pro-maturational effects upon developing networks of iPSC-derived cortical neurons. Finally, transcriptomic analyses implicate synapse-associated extracellular signaling in the astrocytes' pro-maturational effects upon the iPSC-derived neurons. This work helps lay the foundation for future investigations into astrocyte-to-neuron interactions in human health and disease.
Excitatory GABAergic signalling is associated with acquired benzodiazepine resistance in status epilepticus
Status epilepticus (SE) is defined as a state of unrelenting seizure activity. Generalised convulsive SE is associated with a rapidly rising mortality rate, and thus constitutes a medical emergency. Benzodiazepines, which act as positive modulators of chloride (Cl - ) permeable GABA A receptors, are indicated as first-line treatment, but this is ineffective in many cases. We found that 48% of children presenting with SE were unresponsive to benzodiazepine treatment, and critically, that the duration of SE at the time of treatment is an important predictor of non-responsiveness. We therefore investigated the cellular mechanisms that underlie acquired benzodiazepine resistance, using rodent organotypic and acute brain slices. Removing Mg 2+ ions leads to an evolving pattern of epileptiform activity, and eventually to a persistent state of repetitive discharges that strongly resembles clinical EEG recordings of SE. We found that diazepam loses its antiseizure efficacy and conversely exacerbates epileptiform activity during this stage of SE-like activity. Interestingly, a low concentration of the barbiturate phenobarbital had a similar exacerbating effect on SE-like activity, whilst a high concentration of phenobarbital was effective at reducing or preventing epileptiform discharges. We then show that the persistent SE-like activity is associated with a reduction in GABA A receptor conductance and Cl - extrusion capability. We explored the effect on intraneuronal Cl - using both gramicidin, perforated-patch clamp recordings and Cl - imaging. This showed that during SE-like activity, reduced Cl - extrusion capacity was further exacerbated by activity-dependent Cl - loading, resulting in a persistently high intraneuronal Cl - . Consistent with these results, we found that optogenetic stimulation of GABAergic interneurons in the SE-like state, actually enhanced epileptiform activity in a GABA A R dependent manner. Together our findings describe a novel potential mechanism underlying benzodiazepine-resistant SE, with relevance to how this life-threatening condition should be managed in the clinic.
Disrupting Epileptiform Activity by Preventing Parvalbumin Interneuron Depolarization Block.
Inhibitory synaptic mechanisms oppose epileptic network activity in the brain. The breakdown in this inhibitory restraint and propagation of seizure activity has been linked to the overwhelming of feedforward inhibition, which is provided in large part by parvalbumin-expressing (PV) interneurons in the cortex. The underlying cellular processes therefore represent potential targets for understanding and preventing the propagation of seizure activity. Here we use an optogenetic strategy to test the hypothesis that depolarization block in PV interneurons is a significant factor during the loss of inhibitory restraint. Depolarization block results from the inactivation of voltage-gated sodium channels and leads to impaired action potential firing. We used focal NMDA stimulation to elicit reproducible epileptiform discharges in hippocampal organotypic brain slices from male and female mice and combined this with targeted recordings from defined neuronal populations. Simultaneous patch-clamp recordings from PV interneurons and pyramidal neurons revealed epileptiform activity that was associated with an overwhelming of inhibitory synaptic mechanisms and the emergence of a partial, and then complete, depolarization block in PV interneurons. To counteract this depolarization block, we developed protocols for eliciting pulsed membrane hyperpolarization via the inhibitory opsin, archaerhodopsin. This optical approach was effective in counteracting cumulative inactivation of voltage-gated channels, maintaining PV interneuron action potential firing properties during the inhibitory restraint period, and reducing the probability of initiating epileptiform activity. These experiments support the idea that depolarization block is a point of weakness in feedforward inhibitory synaptic mechanisms and represents a target for preventing the initiation and spread of seizure activity.SIGNIFICANCE STATEMENT GABAA receptor-mediated synaptic transmission opposes seizure activity by establishing an inhibitory restraint against spreading excitation. Parvalbumin-expressing (PV) interneurons contribute significantly to this inhibitory restraint, but it has been suggested that these cells are overwhelmed as they enter a state of "depolarization block." Here we test the importance of this process by devising an optogenetic strategy to selectively relieve depolarization block in PV interneurons. By inducing brief membrane hyperpolarization, we show that it is possible to reduce depolarization block in PV interneurons, maintain their action potential firing in the face of strong excitation, and disrupt epileptiform activity in an in vitro model. This represents a proof of principle that targeting rate-limiting processes can strengthen the inhibitory restraint of epileptiform activity.
The transition to status epilepticus: how the brain meets the demands of perpetual seizure activity.
The pathophysiology leading to the development of status epilepticus (SE) remains a topic of significant scientific interest and clinical relevance. The use of multiple experimental and computational models has shown that SE relies on a complex interaction between mechanisms that operate at both a cellular and network level. In this narrative review, we will summarise the current knowledge on the factors that play a key role in allowing SE to develop and persist. These include pathological adaptations to changing ion dynamics, neuroenergetics, receptor expression and neurotransmission, which enable the brain to meet the extensive demands required to maintain ongoing synchronous hyperexcitability. We will examine how these processes converge to enable synapses to support seizure perpetuation. Lastly, we will use the concept of a perpetuating network to highlight how connections between brain regions can provide positive feedback loops that can serve to propagate seizure activity. We hope this review will collate the findings of previous research and help fuel further studies into the mechanisms that underlie how the brain can make the transition to SE.
Chloride dynamics alter the input-output properties of neurons.
Fast synaptic inhibition is a critical determinant of neuronal output, with subcellular targeting of synaptic inhibition able to exert different transformations of the neuronal input-output function. At the receptor level, synaptic inhibition is primarily mediated by chloride-permeable Type A GABA receptors. Consequently, dynamics in the neuronal chloride concentration can alter the functional properties of inhibitory synapses. How differences in the spatial targeting of inhibitory synapses interact with intracellular chloride dynamics to modulate the input-output function of neurons is not well understood. To address this, we developed computational models of multi-compartment neurons that incorporate experimentally parametrised mechanisms to account for neuronal chloride influx, diffusion, and extrusion. We found that synaptic input (either excitatory, inhibitory, or both) can lead to subcellular variations in chloride concentration, despite a uniform distribution of chloride extrusion mechanisms. Accounting for chloride changes resulted in substantial alterations in the neuronal input-output function. This was particularly the case for peripherally targeted dendritic inhibition where dynamic chloride compromised the ability of inhibition to offset neuronal input-output curves. Our simulations revealed that progressive changes in chloride concentration mean that the neuronal input-output function is not static but varies significantly as a function of the duration of synaptic drive. Finally, we found that the observed effects of dynamic chloride on neuronal output were mediated by changes in the dendritic reversal potential for GABA. Our findings provide a framework for understanding the computational effects of chloride dynamics on dendritically targeted synaptic inhibition.
Backpropagation and the brain.
During learning, the brain modifies synapses to improve behaviour. In the cortex, synapses are embedded within multilayered networks, making it difficult to determine the effect of an individual synaptic modification on the behaviour of the system. The backpropagation algorithm solves this problem in deep artificial neural networks, but historically it has been viewed as biologically problematic. Nonetheless, recent developments in neuroscience and the successes of artificial neural networks have reinvigorated interest in whether backpropagation offers insights for understanding learning in the cortex. The backpropagation algorithm learns quickly by computing synaptic updates using feedback connections to deliver error signals. Although feedback connections are ubiquitous in the cortex, it is difficult to see how they could deliver the error signals required by strict formulations of backpropagation. Here we build on past and recent developments to argue that feedback connections may instead induce neural activities whose differences can be used to locally approximate these signals and hence drive effective learning in deep networks in the brain.
Chemogenetic Recruitment of Specific Interneurons Suppresses Seizure Activity.
Current anti-epileptic medications that boost synaptic inhibition are effective in reducing several types of epileptic seizure activity. Nevertheless, these drugs can generate significant side-effects and even paradoxical responses due to the broad nature of their action. Recently developed chemogenetic techniques provide the opportunity to pharmacologically recruit endogenous inhibitory mechanisms in a selective and circuit-specific manner. Here, we use chemogenetics to assess the potential of suppressing epileptiform activity by enhancing the synaptic output from three major interneuron populations in the rodent hippocampus: parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP) expressing interneurons. To target different neuronal populations, promoter-specific cre-recombinase mice were combined with viral-mediated delivery of chemogenetic constructs. Targeted electrophysiological recordings were then conducted in an in vitro model of chronic, drug-resistant epilepsy. In addition, behavioral video-scoring was performed in an in vivo model of acutely triggered seizure activity. Pre-synaptic and post-synaptic whole cell recordings in brain slices revealed that each of the three interneuron types increase their firing rate and synaptic output following chemogenetic activation. However, the interneuron populations exhibited different effects on epileptiform discharges. Recruiting VIP interneurons did not change the total duration of epileptiform discharges. In contrast, recruiting SST or PV interneurons produced robust suppression of epileptiform synchronization. PV interneurons exhibited the strongest effect per cell, eliciting at least a fivefold greater reduction in epileptiform activity than the other cell types. Consistent with this, we found that in vivo chemogenetic recruitment of PV interneurons suppressed convulsive behaviors by more than 80%. Our findings support the idea that selective chemogenetic enhancement of inhibitory synaptic pathways offers potential as an anti-seizure strategy.
Chemicogenetic recruitment of specific interneurons suppresses seizure activity
Enhancing the brain’s endogenous inhibitory mechanisms represents an important strategy for suppressing epileptic discharges. Indeed, drugs that boost synaptic inhibition can disrupt epileptic seizure activity, although these drugs generate complex effects due to the broad nature of their action. Recently developed chemicogenetic techniques provide the opportunity to pharmacologically enhance endogenous inhibitory mechanisms in a more selective manner. Here we use chemicogenetics to assess the anti-epileptic potential of enhancing the synaptic output from three major interneuron populations in the hippocampus: parvalbumin (PV), somatostatin (SST) and vasoactive intestinal peptide (VIP) expressing interneurons. Targeted pre- and post-synaptic whole cell recordings in an in vitro hippocampal mouse model revealed that all three interneuron types increase their firing rate and synaptic output following chemicogenetic activation. However, the interneuron populations exhibited different anti-epileptic effects. Recruiting VIP interneurons resulted in a mixture of pro-epileptic and anti-epileptic effects. In contrast, recruiting SST or PV interneurons produced robust suppression of epileptiform activity. PV interneurons exhibited the strongest effect per cell, eliciting at least a five-fold greater reduction in epileptiform activity than the other cell types. Consistent with this, we found that chemicogenetic recruitment of PV interneurons was effective in an in vivo mouse model of hippocampal seizures. Following efficient delivery of the chemicogenetic tool, pharmacological enhancement of the PV interneuron population suppressed a range of seizure-related behaviours and prevented generalized seizures. Our findings therefore support the idea that selective chemicogenetic enhancement of synaptic inhibitory pathways offers potential as an anti-epileptic strategy. Significance statement Drugs that enhance synaptic inhibition can be effective anticonvulsants but often cause complex effects due to their widespread action. Here we examined the anti-epileptic potential of recently developed chemicogenetic techniques, which offer a way to selectively enhance the synaptic output of distinct types of inhibitory neurons. A combination of in vitro and in vivo experimental models were used to investigate seizure activity in the mouse hippocampus. We find that chemicogenetically recruiting the parvalbumin-expressing population of inhibitory neurons produces the strongest anti-epileptic effect per cell, and that recruiting this cell population can suppress a range of epileptic behaviours in vivo. The data therefore support the idea that targeted chemicogenetic enhancement of synaptic inhibition offers promise for developing new treatments.
Biophysical models reveal the relative importance of transporter proteins and impermeant anions in chloride homeostasis.
Fast synaptic inhibition in the nervous system depends on the transmembrane flux of Cl- ions based on the neuronal Cl- driving force. Established theories regarding the determinants of Cl- driving force have recently been questioned. Here, we present biophysical models of Cl- homeostasis using the pump-leak model. Using numerical and novel analytic solutions, we demonstrate that the Na+/K+-ATPase, ion conductances, impermeant anions, electrodiffusion, water fluxes and cation-chloride cotransporters (CCCs) play roles in setting the Cl- driving force. Our models, together with experimental validation, show that while impermeant anions can contribute to setting [Cl-]i in neurons, they have a negligible effect on the driving force for Cl- locally and cell-wide. In contrast, we demonstrate that CCCs are well-suited for modulating Cl- driving force and hence inhibitory signaling in neurons. Our findings reconcile recent experimental findings and provide a framework for understanding the interplay of different chloride regulatory processes in neurons.
