Search results
Found 5065 matches for
Calcium-dependent neuroepithelial contractions expel damaged cells from the developing brain.
Both developing and adult organisms need efficient strategies for wound repair. In adult mammals, wounding triggers an inflammatory response that can exacerbate tissue injury and lead to scarring. In contrast, embryonic wounds heal quickly and with minimal inflammation, but how this is achieved remains incompletely understood. Using in vivo imaging in the developing brain of Xenopus laevis, we show that ATP release from damaged cells and subsequent activation of purinergic receptors induce long-range calcium waves in neural progenitor cells. Cytoskeletal reorganization and activation of the actomyosin contractile machinery in a Rho kinase-dependent manner then lead to rapid and pronounced apical-basal contractions of the neuroepithelium. These contractions drive the expulsion of damaged cells into the brain ventricle within seconds. Successful cell expulsion prevents the death of nearby cells and an exacerbation of the injury. Cell expulsion through neuroepithelial contraction represents a mechanism for rapid wound healing in the developing brain.
Spatial and temporal properties of visual responses in the thalamus of the developing ferret.
Spatiotemporal patterning of neural activity is thought to influence the development of connections in the visual pathway. This patterning can arise spontaneously or through sensory experience. Here, we use a combination of natural and simple stimuli to investigate which elements of the visual environment modulate the earliest responses in the primary visual pathway of developing ferrets. Recordings were made during the first 2 weeks of visual responsiveness, which, in the ferret, overlaps with the period that the eyelids have not yet opened. Even when the eyelids are closed, both thalamic and cortical activity was found to be temporally modulated under conditions of natural visual stimulation. The modulations correlated with temporal changes in stimulus contrast but also reflected spatial structure in the visual scene. Simple stimuli were used to show that early responses to naturalistic stimuli are influenced by the localization and structure of through-the-eyelid receptive fields. The early visual responses were also characterized by substantial variability in the ability of the cells to detect stimuli of different duration and different intensity, in a temporally precise manner. These temporal and spatial properties should constrain how plasticity mechanisms interpret naturally patterned activity.
Visual experience before eye-opening and the development of the retinogeniculate pathway.
Visual experience before eye-opening is not usually thought to have any developmental significance. Here we show that naturalistic visual stimuli presented through unopened eyelids robustly activate neurons in the ferret dorsal lateral geniculate nucleus. Further, dark-rearing prior to natural eye-opening has striking effects upon geniculate physiology. Receptive field maps after dark-rearing show increased convergence of On- and Off-center responses, and neurons frequently respond to both bright and dark phases of drifting gratings. There is also increased selectivity for the orientation of the gratings. These abnormalities of On-Off segregation can be explained by the finding that the responses of immature On and Off cells to naturalistic stimuli are strongly anticorrelated.
Control of axon branch dynamics by correlated activity in vivo.
To determine how patterned visual activity regulates the development of axonal projections, we collected in vivo time-lapse images of retinal axons from albino Xenopus tadpoles in which binocular innervation of the optic tectum was induced. Axons added branch tips with nearly equal probability in all territories, but eliminated them preferentially from territory dominated by the opposite eye. This selective branch elimination was abolished by blockade of N-methyl-D-aspartate receptors. These results describe a correlation-based mechanism by which visual experience directly governs axon branch dynamics that contribute to the development of topographic maps.
Sensory-Evoked Spiking Behavior Emerges via an Experience-Dependent Plasticity Mechanism.
The ability to generate action potentials (spikes) in response to synaptic input determines whether a neuron participates in information processing. How a developing neuron becomes an active participant in a circuit or whether this process is activity dependent is not known, especially as spike-dependent plasticity mechanisms would not be available to non-spiking neurons. Here we use the optic tectum of awake Xenopus laevis tadpoles to determine how a neuron becomes able to generate sensory-driven spikes in vivo. At the onset of vision, many tectal neurons do not exhibit visual spiking behavior, despite being intrinsically excitable and receiving visuotopically organized synaptic inputs. However, a brief period of visual stimulation can drive these neurons to start generating stimulus-driven spikes. This conversion relies upon a selective increase in glutamatergic input and requires depolarizing GABAergic transmission and NMDA receptor activation. This permissive form of experience-dependent plasticity enables a neuron to start contributing to circuit function.
In vivo spike-timing-dependent plasticity in the optic tectum of Xenopus laevis.
Spike-timing-dependent plasticity (STDP) is found in vivo in a variety of systems and species, but the first demonstrations of in vivo STDP were carried out in the optic tectum of Xenopus laevis embryos. Since then, the optic tectum has served as an excellent experimental model for studying STDP in sensory systems, allowing researchers to probe the developmental consequences of this form of synaptic plasticity during early development. In this review, we will describe what is known about the role of STDP in shaping feed-forward and recurrent circuits in the optic tectum with a focus on the functional implications for vision. We will discuss both the similarities and differences between the optic tectum and mammalian sensory systems that are relevant to STDP. Finally, we will highlight the unique properties of the embryonic tectum that make it an important system for researchers who are interested in how STDP contributes to activity-dependent development of sensory computations.
The potassium-chloride cotransporter 2 promotes cervical cancer cell migration and invasion by an ion transport-independent mechanism.
K(+)-Cl(-) cotransporters (KCCs) play a fundamental role in epithelial cell function, both in the context of ionic homeostasis and also in cell morphology, cell division and locomotion. Unlike other ubiquitously expressed KCC isoforms, expression of KCC2 is widely considered to be restricted to neurons, where it is responsible for maintaining a low intracellular chloride concentration to drive hyperpolarising postsynaptic responses to the inhibitory neurotransmitters GABA and glycine. Here we report a novel finding that KCC2 is widely expressed in several human cancer cell lines including the cervical cancer cell line (SiHa). Membrane biotinylation assays and immunostaining showed that endogenous KCC2 is located on the cell membrane of SiHa cells. To elucidate the role of KCC2 in cervical tumuorigenesis, SiHa cells with stable overexpression or knockdown of KCC2 were employed. Overexpression of KCC2 had no significant effect on cell proliferation but dramatically suppressed cell spreading and stress fibre organization, while knockdown of KCC2 showed opposite effects. In addition, insulin-like growth factor 1 (IGF-1)-induced cell migration and invasiveness were significantly increased by overexpression of KCC2. KCC2-induced cell migration and invasion were not dependent on KCC2 transport function since overexpression of an activity-deficient mutant KCC2 still increased IGF-1-induced cell migration and invasion. Moreover, overexpression of KCC2 significantly diminished the number of focal adhesions, while knockdown of KCC2 increased their number. Taken together, our data establish that KCC2 expression and function are not restricted to neurons and that KCC2 serves to increase cervical tumourigenesis via an ion transport-independent mechanism.
Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics.
Induced pluripotent stem cell (iPSC)-derived cortical neurons potentially present a powerful new model to understand corticogenesis and neurological disease. Previous work has established that differentiation protocols can produce cortical neurons, but little has been done to characterize these at cellular resolution. In particular, it is unclear to what extent in vitro two-dimensional, relatively disordered culture conditions recapitulate the development of in vivo cortical layer identity. Single-cell multiplex reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to interrogate the expression of genes previously implicated in cortical layer or phenotypic identity in individual cells. Totally, 93.6% of single cells derived from iPSCs expressed genes indicative of neuronal identity. High proportions of single neurons derived from iPSCs expressed glutamatergic receptors and synaptic genes. And, 68.4% of iPSC-derived neurons expressing at least one layer marker could be assigned to a laminar identity using canonical cortical layer marker genes. We compared single-cell RNA-seq of our iPSC-derived neurons to available single-cell RNA-seq data from human fetal and adult brain and found that iPSC-derived cortical neurons closely resembled primary fetal brain cells. Unexpectedly, a subpopulation of iPSC-derived neurons co-expressed canonical fetal deep and upper cortical layer markers. However, this appeared to be concordant with data from primary cells. Our results therefore provide reassurance that iPSC-derived cortical neurons are highly similar to primary cortical neurons at the level of single cells but suggest that current layer markers, although effective, may not be able to disambiguate cortical layer identity in all cells.
Neuronal Chloride Regulation via KCC2 Is Modulated through a GABAB Receptor Protein Complex.
GABAB receptors are G-protein-coupled receptors that mediate inhibitory synaptic actions through a series of downstream target proteins. It is increasingly appreciated that the GABAB receptor forms part of larger signaling complexes, which enable the receptor to mediate multiple different effects within neurons. Here we report that GABAB receptors can physically associate with the potassium-chloride cotransporter protein, KCC2, which sets the driving force for the chloride-permeable ionotropic GABAA receptor in mature neurons. Using biochemical, molecular, and functional studies in rodent hippocampus, we show that activation of GABAB receptors results in a decrease in KCC2 function, which is associated with a reduction in the protein at the cell surface. These findings reveal a novel "crosstalk" between the GABA receptor systems, which can be recruited under conditions of high GABA release and which could be important for the regulation of inhibitory synaptic transmission.SIGNIFICANCE STATEMENT Synaptic inhibition in the brain is mediated by ionotropic GABAA receptors (GABAARs) and metabotropic GABAB receptors (GABABRs). To fully appreciate the function and regulation of these neurotransmitter receptors, we must understand their interactions with other proteins. We describe a novel association between the GABABR and the potassium-chloride cotransporter protein, KCC2. This association is significant because KCC2 sets the intracellular chloride concentration found in mature neurons and thereby establishes the driving force for the chloride-permeable GABAAR. We demonstrate that GABABR activation can regulate KCC2 at the cell surface in a manner that alters intracellular chloride and the reversal potential for the GABAAR. Our data therefore support an additional mechanism by which GABABRs are able to modulate fast synaptic inhibition.
Random synaptic feedback weights support error backpropagation for deep learning.
The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning.
Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks.
The mammalian neocortex is characterized by a variety of neuronal cell types and precise arrangements of synaptic connections, but the processes that generate this diversity are poorly understood. Here we examine how a pool of embryonic progenitor cells consisting of apical intermediate progenitors (aIPs) contribute to diversity within the upper layers of mouse cortex. In utero labeling combined with single-cell RNA-sequencing reveals that aIPs can generate transcriptionally defined glutamatergic cell types, when compared to neighboring neurons born from other embryonic progenitor pools. Whilst sharing layer-associated morphological and functional properties, simultaneous patch clamp recordings and optogenetic studies reveal that aIP-derived neurons exhibit systematic biases in both their intralaminar monosynaptic connectivity and the post-synaptic partners that they target within deeper layers of cortex. Multiple cortical progenitor pools therefore represent an important factor in establishing diversity amongst local and long-range fine-scale glutamatergic connectivity, which generates subnetworks for routing excitatory synaptic information.
Somnotate: A probabilistic sleep stage classifier for studying vigilance state transitions.
Electrophysiological recordings from freely behaving animals are a widespread and powerful mode of investigation in sleep research. These recordings generate large amounts of data that require sleep stage annotation (polysomnography), in which the data is parcellated according to three vigilance states: awake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. Manual and current computational annotation methods ignore intermediate states because the classification features become ambiguous, even though intermediate states contain important information regarding vigilance state dynamics. To address this problem, we have developed "Somnotate"-a probabilistic classifier based on a combination of linear discriminant analysis (LDA) with a hidden Markov model (HMM). First we demonstrate that Somnotate sets new standards in polysomnography, exhibiting annotation accuracies that exceed human experts on mouse electrophysiological data, remarkable robustness to errors in the training data, compatibility with different recording configurations, and an ability to maintain high accuracy during experimental interventions. However, the key feature of Somnotate is that it quantifies and reports the certainty of its annotations. We leverage this feature to reveal that many intermediate vigilance states cluster around state transitions, whereas others correspond to failed attempts to transition. This enables us to show for the first time that the success rates of different types of transition are differentially affected by experimental manipulations and can explain previously observed sleep patterns. Somnotate is open-source and has the potential to both facilitate the study of sleep stage transitions and offer new insights into the mechanisms underlying sleep-wake dynamics.
Optogenetic Determination of Dynamic and Cell-Type-Specific Inhibitory Reversal Potentials.
The reversal potential refers to the membrane potential at which the net current flow through a channel reverses direction. The reversal potential is determined by transmembrane ion gradients and, in turn, determines how the channel's activity will affect the membrane potential. Traditional investigation into the reversal potential of inhibitory ligand-gated ion channels (EInh) has relied upon the activation of endogenous receptors, such as the GABA-A receptor (GABAAR). There are, however, challenges associated with activating endogenous receptors, including agonist delivery, isolating channel responses, and the effects of receptor saturation and desensitization. Here, we demonstrate the utility of using a light-gated anion channel, stGtACR2, to probe EInh in the rodent brain. Using mice of both sexes, we demonstrate that the properties of this optically activated channel make it a suitable proxy for studying GABAAR receptor-mediated inhibition. We validate this agonist-independent optogenetic strategy in vitro and in vivo and further show how it can accurately capture differences in EInh dynamics following manipulations of endogenous ion fluxes. This allows us to explore distinct resting EInh differences across genetically defined neuronal subpopulations. Using this approach to challenge ion homeostasis mechanisms in neurons, we uncover cell-specific EInh dynamics that are supported by the differential expression of endogenous ion handling mechanisms. Our findings therefore establish an effective optical strategy for revealing novel aspects of inhibitory reversal potentials and thereby expand the repertoire of optogenetics.
Higher-order thalamocortical circuits are specified by embryonic cortical progenitor types in the mouse brain.
The sensory cortex receives synaptic inputs from both first-order and higher-order thalamic nuclei. First-order inputs relay simple stimulus properties from the periphery, whereas higher-order inputs relay more complex response properties, provide contextual feedback, and modulate plasticity. Here, we reveal that a cortical neuron's higher-order input is determined by the type of progenitor from which it is derived during embryonic development. Within layer 4 (L4) of the mouse primary somatosensory cortex, neurons derived from intermediate progenitors receive stronger higher-order thalamic input and exhibit greater higher-order sensory responses. These effects result from differences in dendritic morphology and levels of the transcription factor Lhx2, which are specified by the L4 neuron's progenitor type. When this mechanism is disrupted, cortical circuits exhibit altered higher-order responses and sensory-evoked plasticity. Therefore, by following distinct trajectories, progenitor types generate diversity in thalamocortical circuitry and may provide a general mechanism for differentially routing information through the cortex.
Effects of clozapine-N-oxide and compound 21 on sleep in laboratory mice.
Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools for remote control of targeted cell populations using chemical actuators that bind to modified receptors. Despite the popularity of DREADDs in neuroscience and sleep research, potential effects of the DREADD actuator clozapine-N-oxide (CNO) on sleep have never been systematically tested. Here, we show that intraperitoneal injections of commonly used CNO doses (1, 5, and 10 mg/kg) alter sleep in wild-type male laboratory mice. Using electroencephalography (EEG) and electromyography (EMG) to analyse sleep, we found a dose-dependent suppression of rapid eye movement (REM) sleep, changes in EEG spectral power during non-REM (NREM) sleep, and altered sleep architecture in a pattern previously reported for clozapine. Effects of CNO on sleep could arise from back-metabolism to clozapine or binding to endogenous neurotransmitter receptors. Interestingly, we found that the novel DREADD actuator, compound 21 (C21, 3 mg/kg), similarly modulates sleep despite a lack of back-metabolism to clozapine. Our results demonstrate that both CNO and C21 can modulate sleep of mice not expressing DREADD receptors. This implies that back-metabolism to clozapine is not the sole mechanism underlying side effects of chemogenetic actuators. Therefore, any chemogenetic experiment should include a DREADD-free control group injected with the same CNO, C21, or newly developed actuator. We suggest that electrophysiological sleep assessment could serve as a sensitive tool to test the biological inertness of novel chemogenetic actuators.
Sleep-wake-related changes in intracellular chloride regulate plasticity at glutamatergic cortical synapses.
Wakefulness and sleep affect the brain's ability to exhibit plastic changes.1,2 For instance, the potentiation of cortical excitatory synaptic connections is associated with the active period, when animals are mainly awake.3,4,5,6,7 It is unclear, however, how changes in neuronal physiology that are associated with sleep-wake history, affect the mechanisms responsible for synaptic plasticity. Recently, it has been shown that sleep-wake history alters transmembrane chloride (Cl-) gradients in cortical pyramidal neurons via Cl- cotransporter activity, which shifts the reversal potential for gamma-aminobutyric acid (GABA) type A receptors (EGABAA) when assessed in vivo and in vitro.8,9 Hyperpolarizing EGABAA values are associated with recent sleep, whereas depolarizing EGABAA values are associated with recent waking. Here, we demonstrate that sleep-wake-history-related changes in EGABAA affect membrane potential dynamics and glutamatergic long-term potentiation (LTP) elicited by spiking activity in pyramidal neurons of the mouse cortex. Reducing the depolarized shift in EGABAA during the active period reduces the potentiation of cortical excitatory synapses onto layer 5 (L5) pyramidal neurons. Depolarized EGABAA values facilitate LTP induction by promoting residual membrane depolarization during synaptically evoked spiking. Changes in LTP induction associated with sleep-wake history can be reversed by switching the EGABAA-dependent effects, either by using direct current injection to counteract the effects upon residual membrane potential depolarization or by modulating cotransporters that regulate EGABAA. We conclude that EGABAA dynamics provide a functional link between changes in a neuron's physiology that are associated with sleep-wake history and the mechanisms responsible for the induction of glutamatergic synaptic plasticity.
