Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Untargeted metabolic profiling of plasma and serum by liquid chromatography-mass spectrometry (LC-MS) is becoming increasingly important in clinical and translational research; however, sample preparation protocols can have a significant impact on study outcomes, and there is currently a lack of standardized approaches. In this study we demonstrate that pretreatment of serum and plasma samples with 1% formic acid (FA, v/v) prior to acetonitrile (MeCN)-induced protein precipitation significantly enhances analytical performance in untargeted metabolomics using reversed-phase liquid chromatography (RPLC)-MS. We show an increase in sample preparation reproducibility and signal intensity across both positive and negative ionization modes. In two independent serum cohorts (OPTIMA and VITACOG), FA-based extraction improved multivariate modeling (orthogonal partial least-squares discriminant analysis, OPLS-DA), with consistently higher classification accuracy, sensitivity, and specificity, alongside reduced variability and increased fold-changes in discriminatory compound-features. We investigated factors potentially involved in the enhanced performance and observed outcomes consistent with the disruption of noncovalent protein-metabolite interactions and the stabilization of labile species. We found no correlation with either protein depletion or differential adduct formation. The results were also not attributable to lowering pH after metabolite extraction. In summary, we demonstrate that FA pretreatment of plasma and serum, prior to protein precipitation, significantly improves sample reproducibility and detection sensitivity in untargeted RPLC-MS metabolomics. This optimized sample preparation strategy offers clear advantages for clinical and translational metabolomics, with the potential to enhance biomarker discovery and metabolic phenotyping.

Original publication

DOI

10.1021/acs.analchem.5c03725

Type

Journal article

Journal

Anal Chem

Publication Date

28/10/2025

Volume

97

Pages

23014 - 23021

Keywords

Metabolomics, Formates, Humans, Plasma, Serum, Mass Spectrometry, Chromatography, Reverse-Phase