Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new study, led by Professor Kim Dora in association with Professor Raimondo Ascione at the University of Bristol, has shown abnormalities in the tiny blood vessels of human hearts which cannot be detected by current heart scans. Poor myogenic (automatic) tone, where blood flow in these vessels is abnormal, is thought to develop independent of disease in the larger arteries, which can be treated using stents or bypass surgeries.

This study, funded by the British Heart Foundation, used tissue biopsies to study the function, structure and alterations in pathways in the micro-arteries that link to abnormalities in myogenic tone. The research team found that 44 per cent of the micro-arteries, from patients with no large coronary artery blockages and undergoing valvular cardiac surgery, had abnormal myogenic tone despite retaining their cell viability. This abnormality was associated with an excessive presence of a molecule called caldesmon within the muscle cells in the wall of the abnormal micro-arteries and with poor alignment of these contracting cells compared to micro-arteries with normal myogenic tone.

Kim explained: “Not only will our findings enhance the development of new medical treatments and possibly new patient imaging modalities, but they represent a new ex-vivo research model for thousands of scientists globally working on microvascular dysfunction in the heart and other organs.”

Full details can be found in the new paper published in Cardiovascular Research

Similar stories

Emptage group successful with £1m MRC-AMED award

Congratulations to the group of Professor Nigel Emptage who have been awarded an MRC-AMED grant, worth £1m, in conjuction with the University of Tokyo and the RIKEN Center for Brain Science

Burton group wins image competition at Oxford BHF CRE Annual Symposium

This image of a blood clot composed of erythrocytes trapped by long fibrous chains of fibrin was judged the winner of the image competition at the BHF CRE 2022 Symposiium, held in December. In this image we can see false coloured erythrocytes (classic biconcave appearance around 5-10 µm in diameter) wrapped by fibrin network.

Understanding the brain at Didcot Girls School Science Club

A group of researchers and students led by Dr Tim Viney visited Didcot Girls School to run a ‘hands on’ event about the brain at the school’s Science Club.

Raised intracellular chloride levels underlie the effects of tiredness in cortex

The feeling of being tired is familiar to everyone. As we know from our own experience, an extended period of wakefulness results in a decline in our performance levels, and the desire to sleep becomes almost irresistible. When you then fall asleep, your sleep is deeper and more consolidated than usual. And yet after just one night of uninterrupted sleep, you can feel refreshed and “back to normal”!

Consequences of Tau pathology on hippocampal pyramidal neurons and network activity in ageing mice

Pathological hyperphosphorylated forms of the microtubule-associated binding protein Tau (pTau) are commonly found in people with neurodegenerative diseases, including Alzheimer’s disease, Corticobasal degeneration, and Progressive supranuclear palsy.