Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Authentic nitric oxide (NO; 0.1 - 10 micromoles) caused transient, dose-dependent relaxation of phenylephrine-induced tone without changing membrane potential in mesenteric arteries. Larger doses, above 10 micromoles, did not evoke more relaxation (maximal relaxation to 150 micromoles NO in denuded arteries, 69+/-7%, n=8) but stimulated muscle hyperpolarization (maximum 19+/-3 mV, n=5). The soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 microM), abolished relaxation to low doses of NO (n=4), but did not modify hyperpolarization with higher doses of NO (n=4). The potassium channel blocker charybdotoxin (ChTX; 50 nM) abolished hyperpolarization to high doses of NO and significantly reduced the maximal relaxation (to 43+/-6%, n=4; P<0.01). ODQ and ChTX together abolished tension and membrane potential change to all doses of NO (n=4). All relaxations to 3-morpholino-sydnonimine (SIN-1; 0.01 - 10 microM) were associated with hyperpolarization. When the endothelium was intact, ChTX inhibited hyperpolarization and relaxation to SIN-1 (n=5), while iberiotoxin (IbTX; 50 nM) or 4-aminopyridine (4-AP; 500 microM) reduced relaxation by 40% and 20%, respectively and by 80% in combination (n=6 in each case). In denuded arteries, relaxation to SIN-1 was unaffected by either ChTX or ODQ alone, but abolished by the inhibitors together (n=6). Alone, 4-AP did not alter relaxation, but in the presence of ODQ it reduced the maximal response by around 45% (n=6; P<0.01). 4-AP, ODQ and IbTX together inhibited relaxation to SIN-1 by 75% (n=6; P<0.01). Therefore, cyclic guanosine 3',5'-monophosphate (cyclic GMP)-independent smooth muscle hyperpolarization, possibly involving direct activation of calcium-activated and voltage-sensitive potassium channels, contributes to relaxation evoked by authentic NO and SIN-1. However, the importance of each pathway depends on the source of NO and with SIN-1 the relative contribution from each pathway is modified by the endothelium.

Original publication




Journal article


Br J Pharmacol

Publication Date





665 - 672


4-Aminopyridine, Animals, Charybdotoxin, Dose-Response Relationship, Drug, Endothelium, Vascular, Enzyme Inhibitors, Guanylate Cyclase, In Vitro Techniques, Male, Membrane Potentials, Molsidomine, Muscle, Smooth, Vascular, Nitric Oxide, Nitric Oxide Donors, Oxadiazoles, Peptides, Potassium Channel Blockers, Quinoxalines, Rats, Rats, Wistar, Vasodilation