Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Compelling evidence links enteric microbes to brain function and behavior. Galacto-oligosaccharide prebiotics have been shown to modulate the composition of gut flora and induce metabolic, neurochemical, and behavioral changes in adult rodents. Despite the brain being most susceptible to environmental factors, such as nutrients and toxins, during the earliest stages of development, it is unknown whether maternal prebiotic supplementation during gestation and lactation influences the offspring gut microbiome, brain, or behavior. The aim of this study was to test whether maternal galacto-oligosaccharide intake during pregnancy and lactation alters the brain and behavior in naïve and endotoxin-challenged offspring. CD1 female mice received either normal drinking water or water supplemented with Bimuno® galacto-oligosaccharides (B-GOS) during gestation and suckling. Offspring behavior was tested at weaning age or adulthood, and a cross-foster design was employed in a separate cohort to differentiate between effects of prenatal and postnatal maternal B-GOS intake. Lipopolysaccharide was also administered to pups at postnatal day 9 to determine whether maternal B-GOS influences the neurobiological and behavioral effects of a neonatal pro-inflammatory challenge in adulthood. Fecal microbiome composition and metabolites were analyzed to explore potential relationships between the maternal microbiome, the offspring gut microbiome, and the offspring brain and behavior. Maternal B-GOS supplementation increased exploratory behavior and reduced expression of hippocampal glutamate receptor genes in young, weaning-age offspring. In addition, postnatal, but not prenatal, B-GOS supplementation increased fecal butyrate and propionate levels. Finally, in adult offspring, perinatal B-GOS intake increased cortical glutamate receptor subunits in females, increased social preference, and reduced anxiety. We provide novel and comprehensive evidence for the influence of maternal prebiotic intake on offspring behavior, brain gene expression, and gut microbiome composition in mice.

Original publication

DOI

10.1016/j.bbi.2020.09.034

Type

Journal article

Journal

Brain Behav Immun

Publication Date

05/10/2020

Keywords

16S sequencing, NMDAR, NMR, early life, galacto-oligosaccharide, gut-brain axis, hippocampus, perinatal, prefrontal cortex, short-chain fatty acids