Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ca2+ signaling is altered substantially in many cancers. The ryanodine receptors (RYRs) are among the key ion channels in Ca2+ signaling. This study aimed to establish the mutational profile of RYR in cancers and investigate the correlation between RYR alterations and cancer phenotypes. The somatic mutation and clinical data of 11,000 cancer patients across 33 cancer types was downloaded from The Cancer Genome Atlas (TCGA) database. Subsequent data processing was performed with corresponding packages of the R software. Mutational profile was analyzed and its correlation with tumor mutational burden (TMB), patient prognosis, age and smoking status was analyzed and compared. All three RYR isoforms exhibited random mutational distribution without hotspot mutations when all cancers were analyzed together. The number of mutations in RYR2 (2388 mutations) far overweight that of RYR1 (1439 mutations) and RYR3 (1573 mutations). Linear correlation was observed between cumulative TMB and cumulative number of mutations for all RYR isoforms. Patients with RYR mutations exhibited significantly higher TMB than those without RYR mutations for most cancer types. Strong correlation was also revealed in the average number of mutations per person between pairs of RYR isoforms. No stratification of patient overall survival (OS) by mutational status was found for all three RYR isoforms when all cancers were analyzed together, however, significant stratification of OS by RYR mutations was revealed in several individual cancers, most strikingly in LUAD (P = 0.0067, RYR1), BLCA (P = 0.00071, RYR2), LUSC (P = 0.036, RYR2) and KIRC (P = 0.0042, RYR3). Furthermore, RYR mutations were correlated with higher age, higher smoking history grading and higher number of pack years. Characteristic mutation profile of RYRs in cancers has been revealed for the first time. RYR mutations were correlated with TMB, age, smoking status and capable of stratifying the prognosis of patients in several cancer types.

Original publication

DOI

10.1038/s41598-022-19905-y

Type

Journal article

Journal

Sci Rep

Publication Date

27/09/2022

Volume

12

Keywords

Calcium, Calcium Signaling, Humans, Mutation, Neoplasms, Protein Isoforms, Ryanodine, Ryanodine Receptor Calcium Release Channel