Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

An increase in central postsynaptic 5-hydroxytryptamine (5-HT) function activates expression of activity-related cytoskeletal protein (Arc). Here, Arc expression was used to test whether, in rats, co-administration of a 5-HT re-uptake inhibitor (paroxetine) and a 5-HT1A receptor antagonist (WAY 100635) increases postsynaptic 5-HT function. After pre-treatment with WAY 100635 (0.3 mg/kg s.c.), paroxetine (5 mg/kg s.c.) caused a threefold increase in 5-HT in prefrontal cortex microdialysates. In situ hybridization studies found that neither paroxetine (5 mg/kg s.c.) nor WAY 1000635 (0.3 mg/kg s.c.) altered Arc mRNA abundance in any region examined. In contrast, paroxetine (5 mg/kg s.c.) increased Arc mRNA after pre-treatment with WAY 100635 (0.3 mg/kg s.c.). This increase was apparent in cortical regions (frontal, parietal and cingulate) and caudate nucleus but was absent in hippocampus (CA1). Increases in Arc mRNA were accompanied by an increase in c-fos mRNA. The increase in Arc expression induced by paroxetine/WAY 100635 was abolished by the 5-HT synthesis inhibitor, p-chlorophenylalanine (300 mg/kg i.p., daily for two days). In conclusion, paroxetine and WAY 100635 injected in combination (but not alone) caused a region-specific, 5-HT-mediated increase in Arc expression. These data provide molecular evidence that co-administration of a 5-HT re-uptake inhibitor and 5-HT1A receptor antagonist increases 5-HT function at the postsynaptic level.


Journal article


J Neurochem

Publication Date





1480 - 1487


Animals, Biomarkers, Cytoskeletal Proteins, Drug Synergism, Extracellular Space, Gene Expression, Male, Microdialysis, Nerve Tissue Proteins, Paroxetine, Piperazines, Prefrontal Cortex, Proto-Oncogene Proteins c-fos, Pyridines, RNA, Messenger, Rats, Rats, Sprague-Dawley, Receptors, Serotonin, Receptors, Serotonin, 5-HT1, Serotonin, Serotonin Antagonists, Serotonin Uptake Inhibitors, Synapses