Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: There is evidence that iron may play a role in the pathology of Alzheimer's disease (AD). There may be genetic factors that contribute to iron deposition resulting in tissue damage thus exacerbating AD. METHODS: We have genotyped 269 healthy elderly controls, 191 cases with definite or probable AD, and 69 with mild cognitive impairment (MCI) from the OPTIMA cohort. RESULTS: We have examined the interaction between the C2 variant of the transferrin (TF) gene and the C282Y allele of the haemochromatosis (HFE) gene as risk factors for developing AD. Our results showed that each of the two variants was associated with an increased risk of AD only in the presence of the other. Neither allele alone had any effect. Carriers of both variants were at 5 times greater risk of AD compared with all others. The interaction was significant by logistic regression (p = 0.014) and by synergy factor analysis (p = 0.015, synergy factor = 5.1). Further, carriers of these two alleles plus apolipoprotein E epsilon4 (APOE4) were at still higher risk of AD: of the 14 tri-carriers of the three variants, identified in this study, 12 had AD and two MCI. CONCLUSION: We suggest that the combination of TF C2 and HFE C282Y may lead to an excess of redox-active iron and the induction of oxidative stress in neurones, which is exacerbated in carriers of APOE4. Since 4% of Northern Europeans carry the two iron-related variants and since iron overload is a treatable condition, these results merit replication.

Type

Journal article

Journal

J Med Genet

Publication Date

04/2004

Volume

41

Pages

261 - 265

Keywords

Aged, Alleles, Alzheimer Disease, Apolipoprotein E4, Apolipoproteins E, Case-Control Studies, Cognition Disorders, Female, Genetic Predisposition to Disease, Genotype, Hemochromatosis Protein, Histocompatibility Antigens Class I, Humans, Iron, Male, Membrane Proteins, Oxidative Stress, Polymorphism, Genetic, Transferrin