Long-term monitoring of hippocampus-dependent behavior in naturalistic settings: mutant mice lacking neurotrophin receptor TrkB in the forebrain show spatial learning but impaired behavioral flexibility.
Vyssotski AL., Dell'Omo G., Poletaeva II., Vyssotsk DL., Minichiello L., Klein R., Wolfer DP., Lipp H-P.
Previous behavioral studies (Minichiello et al., Neuron 1999;24:401-414) showed that mice deficient for the TrkB receptor in the forebrain were unable to learn a swimming navigation task with an invisible platform and were severely impaired in finding a visible platform in the same setup. Likewise, additional behavioral deficits suggested a malfunction of the hippocampus and proximally connected forebrain structures. In order to discriminate whether the behavioral impairment was caused either by deficits in spatial memory and learning, or alternatively by loss of behavioral flexibility, 8 trkB mutant, 13 wild-type, and 22 heterozygous mice were implanted with transponders and released for 21 days into a large outdoor pen (10 x 10 m). The enclosure contained 2 shelters and 8 computer-controlled feeder boxes, delivering food portions for every mouse only during their first visit. Every third day, mice received food ad libitum inside the shelters. All mice learned to patrol the boxes correctly within a few days. However, significant differences emerged during those days with free food available. Wild-type mice remained inside the shelters, while all homozygous mutants continued to patrol the boxes in their habitual way, the heterozygous mutants showing intermediate scores. These and previous data suggest that one of the natural functions of the mouse hippocampus is to comediate behavioral flexibility, and that TrkB receptors might play an essential role in maintaining the neuronal short-term plasticity necessary for this capacity.