Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent evidence shows that neurotrophins are not only involved in neuronal survival and differentiation but also in modulating synaptic strength in the developing and adult nervous system. To understand how neurotrophins induce changes in synaptic strength, we have investigated signaling pathways downstream of the TrkB receptor, which binds brain-derived neurotrophic factor (BDNF) or NT-4/5. To test whether the Shc-site activated signaling pathway, which has been shown to be important for neuronal survival in vivo, also plays a role in processes like long-term potentiation (LTP), we have generated a mouse strain carrying a mutation in the Shc-binding site of the TrkB receptor. In hippocampal slices from these mice we investigated whether basal synaptic transmission, early-LTP (E-LTP) or late-LTP (L-LTP) were affected by this mutation. We found that homo- and heterozygous mutant mice show no difference in the induction-rate or magnitude of E-LTP and L-LTP induced by theta-burst or tetanus stimulation, suggesting that the Shc-binding site in the TrkB receptor and its downstream activated signaling cascade is not involved in hippocampal synaptic plasticity.


Journal article



Publication Date





717 - 724


Animals, Binding Sites, Brain-Derived Neurotrophic Factor, Electric Stimulation, Excitatory Postsynaptic Potentials, Genotype, Hippocampus, In Vitro Techniques, Long-Term Potentiation, Mice, Mice, Neurologic Mutants, Neurons, Receptor, trkB, Signal Transduction, Synaptic Transmission, src Homology Domains