Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The syntheses of pure RG-I fragments of key plant matrix biomolecule pectin using a counterintuitive late-stage convergent cis-glycosylation has allowed detailed analyses of their solution-phase conformations, metal binding affinities, pK(a) values, self-assembly equilibria, and diffusional kinetics. These reveal a striking, right-handed 3(1)-helix that provides an effective and repeating lateral display of putative liganding carboxylates. Moreover, these heteropolymeric structures allow units as short as tetrasaccharides to self-assemble through carbohydrate-carbohydrate interactions that are induced by the presence of Ca(II), a known dynamic trigger in planta. These self-assembly properties can be switched simply by the addition or removal of a single methyl group in this repeating unit through methyl (de)esterification, another known dynamic trigger in planta. Together, the combined effect of Ca(II) and methylation revealed here suggests a concerted molecular basis for these two major dynamic modifications in planta.

Original publication

DOI

10.1021/ja9090963

Type

Journal article

Journal

J Am Chem Soc

Publication Date

02/06/2010

Volume

132

Pages

7238 - 7239

Keywords

Molecular Conformation, Pectins, Plants