Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca(2+) signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community.

Original publication

DOI

10.1038/srep26317

Type

Journal article

Journal

Sci Rep

Publication Date

24/05/2016

Volume

6

Keywords

Animals, CA3 Region, Hippocampal, Calcium Signaling, Central Nervous System, Equipment Design, Fluorescent Dyes, Lasers, Male, Microscopy, Fluorescence, Photolysis, Rats, Rats, Wistar