A compact light-sheet microscope for the study of the mammalian central nervous system.
Yang Z., Haslehurst P., Scott S., Emptage N., Dholakia K.
Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca(2+) signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community.