Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A SAR translation strategy adopted for the discovery of tetrahydroisoquinolinone (THIQ)-based steroidomimetic microtubule disruptors has been extended to dihydroisoquinolinone (DHIQ)-based compounds. A steroid A,B-ring-mimicking DHIQ core was connected to methoxyaryl D-ring mimics through methylene, carbonyl, and sulfonyl linkers, and the resulting compounds were evaluated against two cancer cell lines. The carbonyl-linked DHIQs in particular exhibit significant in vitro antiproliferative activities (e.g., 6-hydroxy-7-methoxy-2-(3,4,5-trimethoxybenzoyl)-3,4-dihydroisoquinolin-1(2H)-one (16 g): GI50 51 nM in DU-145 cells). The broad anticancer activity of DHIQ 16 g was confirmed in the NCI 60-cell line assay giving a mean activity of 33 nM. Furthermore, 6-hydroxy-2-(3,5-dimethoxybenzoyl)-7-methoxy-3,4-dihydroisoquinolin-1(2H)-one (16 f) and 16 g and their sulfamate derivatives 17 f and 17 g (2-(3,5-dimethoxybenzoyl)-7-methoxy-6-sulfamoyloxy-3,4-dihydroisoquinolin-1(2H)-one and 7-methoxy-2-(3,4,5-trimethoxybenzoyl)-6-sulfamoyloxy-3,4-dihydroisoquinolin-1(2H)-one, respectively) show excellent activity against the polymerization of tubulin, close to that of the clinical combretastatin A-4, and bind competitively at the colchicine binding site of tubulin. Compounds 16 f and 17 f were also shown to demonstrate in vitro anti-angiogenic activity. Additionally, X-ray and computational analyses of 17 f reveal that electrostatic repulsion between the two adjacent carbonyl groups, through conformational biasing, dictates the adoption of a "steroid-like" conformation that may partially explain the excellent in vitro activities.

Original publication

DOI

10.1002/cmdc.201400017

Type

Journal article

Journal

ChemMedChem

Publication Date

04/2014

Volume

9

Pages

798 - 812

Keywords

colchicine, dihydroisoquinolinones, electrostatic repulsion, microtubules, tubulin, Antineoplastic Agents, Cell Line, Tumor, Cell Proliferation, Dose-Response Relationship, Drug, Drug Screening Assays, Antitumor, Humans, Isoquinolines, Models, Molecular, Molecular Structure, Structure-Activity Relationship