Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

myo-Inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P(5)), an inositol polyphosphate of emerging significance in cellular signalling, and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesised from the same myo-inositol-based precursor. Potentiometric and NMR titrations show that both pentakisphosphates undergo a conformational ring-flip at higher pH, beginning at pH 8 for scyllo-InsP(5) and pH 9 for Ins(1,3,4,5,6)P(5). Over the physiological pH range, however, the conformation of the inositol rings and the microprotonation patterns of the phosphate groups in Ins(1,3,4,5,6)P(5) and scyllo-InsP(5) are similar. Thus, scyllo-InsP(5) should be a useful tool for identifying biologically relevant actions of Ins(1,3,4,5,6)P(5), mediated by specific binding sites, and distinguishing them from nonspecific electrostatic effects. We also demonstrate that, although scyllo-InsP(5) and Ins(1,3,4,5,6)P(5) are both hydrolysed by multiple inositol polyphosphate phosphatase (MINPP), scyllo-InsP(5) is not dephosphorylated by PTEN or phosphorylated by Ins(1,3,4,5,6)P(5) 2-kinases. This finding both reinforces the value of scyllo-InsP(5) as a biological control and shows that the axial 2-OH group of Ins(1,3,4,5,6)P(5) plays a part in substrate recognition by PTEN and the Ins(1,3,4,5,6)P(5) 2-kinases.

Original publication

DOI

10.1002/cbic.200600037

Type

Journal article

Journal

Chembiochem

Publication Date

07/2006

Volume

7

Pages

1114 - 1122

Keywords

Inositol Phosphates, Magnetic Resonance Spectroscopy, Molecular Conformation, PTEN Phosphohydrolase, Phosphoric Monoester Hydrolases, Potentiometry, Proton-Motive Force, Static Electricity, Structure-Activity Relationship, Substrate Specificity