Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The naturally occurring tetrakisphosphate myo-inositol-1,3,4, 6-tetrakisphosphate [Ins(1,3,4,6)P4] was able to release Ca2+ from the intracellular stores of permeabilized rabbit platelets but was 40-fold less potent than D-myo-inositol-1,4,5-trisphosphate [Ins(1,4,5)P3]. The Ca2+ releasing activity of Ins(1,3,4,6)P4 was rationalized by envisaging two alternative receptor binding orientations in which the vicinal D-1,6-bisphosphate of Ins(1,3,4,6)P4 mimics the D-4,5-bisphosphate in the Ins(1,4,5)P3 binding conformation. This rationalization predicted that Ins(1,4,5)P3 regioisomers [i.e, D-myo-inositol -1,4,6-trisphosphate [D-Ins(1,4,6)P3] and D-myo-inositol-1,3,6 -trisphosphate [D-Ins(1,3,6)P3]] should also possess Ca(2+)-releasing activity. The unambiguous total synthesis of the enatiomers of Ins(1,4,6)P3 [i.e., D-Ins(1,4,6)P3 and D-Ins(3,4,6)P3] and the enatiomers of Ins(1,3,4)P3 [i.e., D-Ins(1,3,6)P3 and D-Ins(1,3,4)P3] allowed an examination of this prediction. D-Ins(1,4,6)P3 released Ca2+ from the intracellular stores of permeabilized platelets and was only 2-3-fold less potent than Ins(1,4,5)P3. D-Ins(1,3,6)P3 [alternative nomenclature, L-Ins(1,3,4)P3] also released Ca2+ but was 12-fold less potent than Ins(1,4,5)P3. Both D-Ins(1,4,6)P3 and D-Ins(1,3,6)P3 displaced specifically bound [3H]Ins(1,4,5)P3 from the Ins(1,4,5)P3 receptor on rat cerebellar membranes. In contrast, however, D-Ins(3,4,6)P3 [alternative nomenclature, L-Ins(1,4,6)P3] and D-Ins(1,3,4)P3 neither possessed Ca(2+)-releasing activity nor displaced [3H]Ins(1,4,5)P3. The ability of D-Ins(1,3,6)P3 to release Ca2+ in permeabilized platelets is in contrast to its apparent lack of Ca(2+)-mobilizing activity previously reported in rat basophilic leukemic cells. The possibility that this is a reflection of the different Ins(1,4,5)P3 receptor subtypes possessed by these two cell types is discussed.


Journal article


Mol Pharmacol

Publication Date





1223 - 1230


Animals, Binding Sites, Binding, Competitive, Blood Platelets, Calcium, Calcium Channels, Cell Membrane Permeability, Cerebellum, Inositol 1,4,5-Trisphosphate, Inositol 1,4,5-Trisphosphate Receptors, Inositol Phosphates, Rabbits, Rats, Receptors, Cytoplasmic and Nuclear, Sensitivity and Specificity, Stereoisomerism