Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Ins(1,4,5)P3 regioisomers, Ins(1,4,6)P3 and Ins(1,3,6)P3, which can mimic the 1,4,5-arrangement on the inositol ring of Ins(1,4,5)P3, were examined for Ca2+ release by using four types of saponin-permeabilized cell possessing various abundances of receptor subtypes, with special reference to the relation of potency to receptor subtype. Ins(1,4,6)P3 and Ins(1,3,6)P3 were weak agonists in rat basophilic leukaemic cells (RBL cells), which possess predominantly subtype II receptors, with respective potencies of 1/200 and less than 1/500 that of Ins(1,4,5)P3 [the EC50 values were 0.2, 45 and more than 100 microM for Ins(1,4,5)P3, Ins(1,4,6)P3 and Ins(1,3,6)P3 respectively]. Similar rank order potencies were also evaluated for the displacement of [3H]Ins(1,4,5)P3 bound to RBL cell membranes by these regioisomers. However, they caused Ca2+ release from GH3 rat pituitary cells possessing predominantly subtype I receptors more potently; Ins(1,4,6)P3 and Ins(1,3,6)P3 evoked release at respective concentrations of only one-third and one-twentieth that of Ins(1,4,5)P3 (the EC50 values were 0.4, 1.2 and 8 microM for Ins(1,4,5)P3, Ins(1,4,6)P3 and Ins(1,3,6)P3 respectively). In COS-1 African green-monkey kidney cells, with the relative abundances of 37% of the subtype II and of 62% of the subtype III receptor, potencies of 1/40 and approx. 1/200 for Ins(1, 4,6)P3 and Ins(1,3,6)P3 respectively were exhibited relative to Ins(1,4,5)P3 (the EC50 values were 0.4, 15 and approx. 80 microM for Ins(1,4,5)P3, Ins(1,4,6)P3 and Ins(1,3,6)P3 respectively). In HL-60 human leukaemic cells, in spite of the dominant presence of subtype I receptors (71%), similar respective potencies to those seen with COS-1 cells were exhibited (the EC50 values were 0.3, 15 and approx. 100 microM for Ins(1,4,5)P3, Ins(1,4,6)P3 and Ins(1,3,6)P3 respectively). These results indicate that these regioisomers are the first ligands that distinguish between receptor subtypes; the present observations are of significance for the future design of molecules with enhanced selectivity.


Journal article


Biochem J

Publication Date



328 ( Pt 1)


93 - 98


Animals, COS Cells, Calcium, Calcium Channels, HL-60 Cells, Humans, Inositol 1,4,5-Trisphosphate, Inositol 1,4,5-Trisphosphate Receptors, Leukemia, Basophilic, Acute, Molecular Conformation, Pituitary Neoplasms, Rats, Receptors, Cytoplasmic and Nuclear, Stereoisomerism, Tumor Cells, Cultured